Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video

Riemannian manifolds have been widely employed for video representations in visual classification tasks including video-based face recognition. The success mainly derives from learning a discriminant Riemannian metric which encodes the non-linear geometry of the underlying Riemannian manifolds. In t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 14. Dez., Seite 2827-2840
1. Verfasser: Huang, Zhiwu (VerfasserIn)
Weitere Verfasser: Wang, Ruiping, Shan, Shiguang, Van Gool, Luc, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286327767
003 DE-627
005 20231225051442.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2776154  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286327767 
035 |a (NLM)29990185 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Zhiwu  |e verfasserin  |4 aut 
245 1 0 |a Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2019 
500 |a Date Revised 16.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Riemannian manifolds have been widely employed for video representations in visual classification tasks including video-based face recognition. The success mainly derives from learning a discriminant Riemannian metric which encodes the non-linear geometry of the underlying Riemannian manifolds. In this paper, we propose a novel metric learning framework to learn a distance metric across a Euclidean space and a Riemannian manifold to fuse average appearance and pattern variation of faces within one video. The proposed metric learning framework can handle three typical tasks of video-based face recognition: Video-to-Still, Still-to-Video and Video-to-Video settings. To accomplish this new framework, by exploiting typical Riemannian geometries for kernel embedding, we map the source Euclidean space and Riemannian manifold into a common Euclidean subspace, each through a corresponding high-dimensional Reproducing Kernel Hilbert Space (RKHS). With this mapping, the problem of learning a cross-view metric between the two source heterogeneous spaces can be converted to learning a single-view Euclidean distance metric in the target common Euclidean space. By learning information on heterogeneous data with the shared label, the discriminant metric in the common space improves face recognition from videos. Extensive experiments on four challenging video face databases demonstrate that the proposed framework has a clear advantage over the state-of-the-art methods in the three classical video-based face recognition scenarios 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Ruiping  |e verfasserin  |4 aut 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Van Gool, Luc  |e verfasserin  |4 aut 
700 1 |a Chen, Xilin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 12 vom: 14. Dez., Seite 2827-2840  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:12  |g day:14  |g month:12  |g pages:2827-2840 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2776154  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 12  |b 14  |c 12  |h 2827-2840