Visual and Semantic Knowledge Transfer for Large Scale Semi-Supervised Object Detection

Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 14. Dez., Seite 3045-3058
1. Verfasser: Tang, Yuxing (VerfasserIn)
Weitere Verfasser: Wang, Josiah, Wang, Xiaofang, Gao, Boyang, Dellandrea, Emmanuel, Gaizauskas, Robert, Chen, Liming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286327422
003 DE-627
005 20231225051442.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2771779  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286327422 
035 |a (NLM)29990152 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Yuxing  |e verfasserin  |4 aut 
245 1 0 |a Visual and Semantic Knowledge Transfer for Large Scale Semi-Supervised Object Detection 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Josiah  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaofang  |e verfasserin  |4 aut 
700 1 |a Gao, Boyang  |e verfasserin  |4 aut 
700 1 |a Dellandrea, Emmanuel  |e verfasserin  |4 aut 
700 1 |a Gaizauskas, Robert  |e verfasserin  |4 aut 
700 1 |a Chen, Liming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 12 vom: 14. Dez., Seite 3045-3058  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:12  |g day:14  |g month:12  |g pages:3045-3058 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2771779  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 12  |b 14  |c 12  |h 3045-3058