|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM286326906 |
003 |
DE-627 |
005 |
20231225051441.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2017.2771766
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0954.xml
|
035 |
|
|
|a (DE-627)NLM286326906
|
035 |
|
|
|a (NLM)29990099
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jiang, Shuhui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Learning Consensus Representation for Weak Style Classification
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Style classification (e.g., Baroque and Gothic architecture style) is grabbing increasing attention in many fields such as fashion, architecture, and manga. Most existing methods focus on extracting discriminative features from local patches or patterns. However, the spread out phenomenon in style classification has not been recognized yet. It means that visually less representative images in a style class are usually very diverse and easily getting misclassified. We name them weak style images. Another issue when employing multiple visual features towards effective weak style classification is lack of consensus among different features. That is, weights for different visual features in the local patch should have been allocated similar values. To address these issues, we propose a Consensus Style Centralizing Auto-Encoder (CSCAE) for learning robust style features representation, especially for weak style classification. First, we propose a Style Centralizing Auto-Encoder (SCAE) which centralizes weak style features in a progressive way. Then, based on SCAE, we propose both the non-linear and linear version CSCAE which adaptively allocate weights for different features during the progressive centralization process. Consensus constraints are added based on the assumption that the weights of different features of the same patch should be similar. Specifically, the proposed linear counterpart of CSCAE motivated by the "shared weights" idea as well as group sparsity improves both efficacy and efficiency. For evaluations, we experiment extensively on fashion, manga and architecture style classification problems. In addition, we collect a new dataset-Online Shopping, for fashion style classification, which will be publicly available for vision based fashion style research. Experiments demonstrate the effectiveness of the SCAE and CSCAE on both public and newly collected datasets when compared with the most recent state-of-the-art works
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Shao, Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jia, Chengcheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fu, Yun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 40(2018), 12 vom: 28. Dez., Seite 2906-2919
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2018
|g number:12
|g day:28
|g month:12
|g pages:2906-2919
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2017.2771766
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2018
|e 12
|b 28
|c 12
|h 2906-2919
|