Learning Consensus Representation for Weak Style Classification

Style classification (e.g., Baroque and Gothic architecture style) is grabbing increasing attention in many fields such as fashion, architecture, and manga. Most existing methods focus on extracting discriminative features from local patches or patterns. However, the spread out phenomenon in style c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 28. Dez., Seite 2906-2919
1. Verfasser: Jiang, Shuhui (VerfasserIn)
Weitere Verfasser: Shao, Ming, Jia, Chengcheng, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286326906
003 DE-627
005 20231225051441.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2771766  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286326906 
035 |a (NLM)29990099 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Shuhui  |e verfasserin  |4 aut 
245 1 0 |a Learning Consensus Representation for Weak Style Classification 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Style classification (e.g., Baroque and Gothic architecture style) is grabbing increasing attention in many fields such as fashion, architecture, and manga. Most existing methods focus on extracting discriminative features from local patches or patterns. However, the spread out phenomenon in style classification has not been recognized yet. It means that visually less representative images in a style class are usually very diverse and easily getting misclassified. We name them weak style images. Another issue when employing multiple visual features towards effective weak style classification is lack of consensus among different features. That is, weights for different visual features in the local patch should have been allocated similar values. To address these issues, we propose a Consensus Style Centralizing Auto-Encoder (CSCAE) for learning robust style features representation, especially for weak style classification. First, we propose a Style Centralizing Auto-Encoder (SCAE) which centralizes weak style features in a progressive way. Then, based on SCAE, we propose both the non-linear and linear version CSCAE which adaptively allocate weights for different features during the progressive centralization process. Consensus constraints are added based on the assumption that the weights of different features of the same patch should be similar. Specifically, the proposed linear counterpart of CSCAE motivated by the "shared weights" idea as well as group sparsity improves both efficacy and efficiency. For evaluations, we experiment extensively on fashion, manga and architecture style classification problems. In addition, we collect a new dataset-Online Shopping, for fashion style classification, which will be publicly available for vision based fashion style research. Experiments demonstrate the effectiveness of the SCAE and CSCAE on both public and newly collected datasets when compared with the most recent state-of-the-art works 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shao, Ming  |e verfasserin  |4 aut 
700 1 |a Jia, Chengcheng  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 12 vom: 28. Dez., Seite 2906-2919  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:12  |g day:28  |g month:12  |g pages:2906-2919 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2771766  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 12  |b 28  |c 12  |h 2906-2919