Probabilistic Dimensionality Reduction via Structure Learning

We propose an alternative probabilistic dimensionality reduction framework that can naturally integrate the generative model and the locality information of data. Based on this framework, we present a new model, which is able to learn a set of embedding points in a low-dimensional space by retaining...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 1 vom: 28. Jan., Seite 205-219
1. Verfasser: Wang, Li (VerfasserIn)
Weitere Verfasser: Mao, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286326337
003 DE-627
005 20231225051440.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2785402  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286326337 
035 |a (NLM)29990039 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Li  |e verfasserin  |4 aut 
245 1 0 |a Probabilistic Dimensionality Reduction via Structure Learning 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose an alternative probabilistic dimensionality reduction framework that can naturally integrate the generative model and the locality information of data. Based on this framework, we present a new model, which is able to learn a set of embedding points in a low-dimensional space by retaining the inherent structure from high-dimensional data. The objective function of this new model can be equivalently interpreted as two coupled learning problems, i.e., structure learning and the learning of projection matrix. Inspired by this interesting interpretation, we propose another model, which finds a set of embedding points that can directly form an explicit graph structure. We proved that the model by learning explicit graphs generalizes the reversed graph embedding method, but leads to a natural interpretation from Bayesian perspective. This can greatly facilitate data visualization and scientific discovery in downstream analysis. Extensive experiments are performed that demonstrate that the proposed framework is able to retain the inherent structure of datasets and achieve competitive quantitative results in terms of various performance evaluation criteria 
650 4 |a Journal Article 
700 1 |a Mao, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 1 vom: 28. Jan., Seite 205-219  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:1  |g day:28  |g month:01  |g pages:205-219 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2785402  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 1  |b 28  |c 01  |h 205-219