Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction

The visual focus of attention (VFOA) has been recognized as a prominent conversational cue. We are interested in estimating and tracking the VFOAs associated with multi-party social interactions. We note that in this type of situations the participants either look at each other or at an object of in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 11 vom: 28. Nov., Seite 2711-2724
1. Verfasser: Masse, Benoit (VerfasserIn)
Weitere Verfasser: Ba, Sileye, Horaud, Radu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286326086
003 DE-627
005 20231225051440.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2782819  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286326086 
035 |a (NLM)29990014 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Masse, Benoit  |e verfasserin  |4 aut 
245 1 0 |a Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.10.2019 
500 |a Date Revised 07.10.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The visual focus of attention (VFOA) has been recognized as a prominent conversational cue. We are interested in estimating and tracking the VFOAs associated with multi-party social interactions. We note that in this type of situations the participants either look at each other or at an object of interest; therefore their eyes are not always visible. Consequently both gaze and VFOA estimation cannot be based on eye detection and tracking. We propose a method that exploits the correlation between eye gaze and head movements. Both VFOA and gaze are modeled as latent variables in a Bayesian switching state-space model (also referred switching Kalman filter). The proposed formulation leads to a tractable learning method and to an efficient online inference procedure that simultaneously tracks gaze and visual focus. The method is tested and benchmarked using two publicly available datasets, Vernissage and LAEO, that contain typical multi-party human-robot and human-human interactions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ba, Sileye  |e verfasserin  |4 aut 
700 1 |a Horaud, Radu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 11 vom: 28. Nov., Seite 2711-2724  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:11  |g day:28  |g month:11  |g pages:2711-2724 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2782819  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 11  |b 28  |c 11  |h 2711-2724