Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 1 vom: 28. Jan., Seite 176-189
1. Verfasser: Ghesu, Florin-Cristian (VerfasserIn)
Weitere Verfasser: Georgescu, Bogdan, Zheng, Yefeng, Grbic, Sasa, Maier, Andreas, Hornegger, Joachim, Comaniciu, Dorin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286326035
003 DE-627
005 20231225051440.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2782687  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286326035 
035 |a (NLM)29990011 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghesu, Florin-Cristian  |e verfasserin  |4 aut 
245 1 0 |a Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans 
650 4 |a Journal Article 
700 1 |a Georgescu, Bogdan  |e verfasserin  |4 aut 
700 1 |a Zheng, Yefeng  |e verfasserin  |4 aut 
700 1 |a Grbic, Sasa  |e verfasserin  |4 aut 
700 1 |a Maier, Andreas  |e verfasserin  |4 aut 
700 1 |a Hornegger, Joachim  |e verfasserin  |4 aut 
700 1 |a Comaniciu, Dorin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 1 vom: 28. Jan., Seite 176-189  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:1  |g day:28  |g month:01  |g pages:176-189 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2782687  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 1  |b 28  |c 01  |h 176-189