Learning Kinematic Structure Correspondences Using Multi-Order Similarities

In this paper, we present a novel framework for finding the kinematic structure correspondences between two articulated objects in videos via hypergraph matching. In contrast to appearance and graph alignment based matching methods, which have been applied among two similar static images, the propos...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 28. Dez., Seite 2920-2934
Auteur principal: Chang, Hyung Jin (Auteur)
Autres auteurs: Fischer, Tobias, Petit, Maxime, Zambelli, Martina, Demiris, Yiannis
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't