Learning Kinematic Structure Correspondences Using Multi-Order Similarities

In this paper, we present a novel framework for finding the kinematic structure correspondences between two articulated objects in videos via hypergraph matching. In contrast to appearance and graph alignment based matching methods, which have been applied among two similar static images, the propos...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 28. Dez., Seite 2920-2934
1. Verfasser: Chang, Hyung Jin (VerfasserIn)
Weitere Verfasser: Fischer, Tobias, Petit, Maxime, Zambelli, Martina, Demiris, Yiannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286325772
003 DE-627
005 20231225051440.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2777486  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286325772 
035 |a (NLM)29989982 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Hyung Jin  |e verfasserin  |4 aut 
245 1 0 |a Learning Kinematic Structure Correspondences Using Multi-Order Similarities 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a novel framework for finding the kinematic structure correspondences between two articulated objects in videos via hypergraph matching. In contrast to appearance and graph alignment based matching methods, which have been applied among two similar static images, the proposed method finds correspondences between two dynamic kinematic structures of heterogeneous objects in videos. Thus our method allows matching the structure of objects which have similar topologies or motions, or a combination of the two. Our main contributions can be summarised as follows: (i) casting the kinematic structure correspondence problem into a hypergraph matching problem by incorporating multi-order similarities with normalising weights, (ii) introducing a structural topology similarity measure by aggregating topology constrained subgraph isomorphisms, (iii) measuring kinematic correlations between pairwise nodes, and (iv) proposing a combinatorial local motion similarity measure using geodesic distance on the Riemannian manifold. We demonstrate the robustness and accuracy of our method through a number of experiments on synthetic and real data, outperforming various other state of the art methods. Our method is not limited to a specific application nor sensor, and can be used as building block in applications such as action recognition, human motion retargeting to robots, and articulated object manipulation amongst others 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Fischer, Tobias  |e verfasserin  |4 aut 
700 1 |a Petit, Maxime  |e verfasserin  |4 aut 
700 1 |a Zambelli, Martina  |e verfasserin  |4 aut 
700 1 |a Demiris, Yiannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 12 vom: 28. Dez., Seite 2920-2934  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:12  |g day:28  |g month:12  |g pages:2920-2934 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2777486  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 12  |b 28  |c 12  |h 2920-2934