Person Re-Identification by Cross-View Multi-Level Dictionary Learning

Person re-identification plays an important role in many safety-critical applications. Existing works mainly focus on extracting patch-level features or learning distance metrics. However, the representation power of extracted features might be limited, due to the various viewing conditions of pedes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 28. Dez., Seite 2963-2977
1. Verfasser: Li, Sheng (VerfasserIn)
Weitere Verfasser: Shao, Ming, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM286325608
003 DE-627
005 20250223191318.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2764893  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286325608 
035 |a (NLM)29989963 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Sheng  |e verfasserin  |4 aut 
245 1 0 |a Person Re-Identification by Cross-View Multi-Level Dictionary Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Person re-identification plays an important role in many safety-critical applications. Existing works mainly focus on extracting patch-level features or learning distance metrics. However, the representation power of extracted features might be limited, due to the various viewing conditions of pedestrian images in complex real-world scenarios. To improve the representation power of features, we learn discriminative and robust representations via dictionary learning in this paper. First, we propose a Cross-view Dictionary Learning (CDL) model, which is a general solution to the multi-view learning problem. Inspired by the dictionary learning based domain adaptation, CDL learns a pair of dictionaries from two views. In particular, CDL adopts a projective learning strategy, which is more efficient than the optimization in traditional dictionary learning. Second, we propose a Cross-view Multi-level Dictionary Learning (CMDL) approach based on CDL. CMDL contains dictionary learning models at different representation levels, including image-level, horizontal part-level, and patch-level. The proposed models take advantages of the view-consistency information, and adaptively learn pairs of dictionaries to generate robust and compact representations for pedestrian images. Third, we incorporate a discriminative regularization term to CMDL, and propose a CMDL-Dis approach which learns pairs of discriminative dictionaries in image-level and part-level. We devise efficient optimization algorithms to solve the proposed models. Finally, a fusion strategy is utilized to generate the similarity scores for test images. Experiments on the public VIPeR, CUHK Campus, iLIDS, GRID and PRID450S datasets show that our approach achieves the state-of-the-art performance 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Shao, Ming  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 12 vom: 28. Dez., Seite 2963-2977  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:40  |g year:2018  |g number:12  |g day:28  |g month:12  |g pages:2963-2977 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2764893  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 12  |b 28  |c 12  |h 2963-2977