Plant carbon metabolism and climate change : elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 221(2019), 1 vom: 07. Jan., Seite 32-49
1. Verfasser: Dusenge, Mirindi Eric (VerfasserIn)
Weitere Verfasser: Duarte, André Galvao, Way, Danielle A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review acclimation drought nitrogen stomatal conductance warming water use efficiency Carbon Dioxide mehr... 142M471B3J Carbon 7440-44-0
Beschreibung
Zusammenfassung:© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change
Beschreibung:Date Completed 07.01.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15283