Performance evaluation and substrate removal kinetics in an up-flow anaerobic hybrid membrane bioreactor treating simulated high-strength wastewater
The prime objective of the present study is to evaluate the performance of novel up-flow anaerobic hybrid membrane bioreactor (An-HMBR) treating high-strength wastewater (synthetic) using polyurethane foam as filter media. Treatment efficiency of the entire An-HMBR varied from 88-97% corresponding t...
Publié dans: | Environmental technology. - 1993. - 41(2020), 3 vom: 01. Jan., Seite 309-321 |
---|---|
Auteur principal: | |
Autres auteurs: | |
Format: | Article en ligne |
Langue: | English |
Publié: |
2020
|
Accès à la collection: | Environmental technology |
Sujets: | Journal Article Anaerobic hybrid membrane bioreactor ceramic membrane high-strength wastewater polyurethane foam substrate removal kinetics Waste Water |
Résumé: | The prime objective of the present study is to evaluate the performance of novel up-flow anaerobic hybrid membrane bioreactor (An-HMBR) treating high-strength wastewater (synthetic) using polyurethane foam as filter media. Treatment efficiency of the entire An-HMBR varied from 88-97% corresponding to 0.67-3.90 d of hydraulic retention time (HRT) with organic loading rate of 6.4-1.06 kg COD m-3 d-1. The modified Stover-Kincannon model was the most appropriate model for An-HMBR and anaerobic hybrid bioreactor (excluding membrane). The suspended growth system in An-HMBR could be described by both modified Stover-Kincannon and Grau second order model. The attached growth system in An-HMBR followed conventional Monod's kinetics. A novel combination of suspended, attached and membrane in single reactor increased the solid retention time to as high as 756 d at 3.9 d HRT which not only improved the COD removal efficiency but also enhanced the performance of the membrane |
---|---|
Description: | Date Completed 30.12.2019 Date Revised 07.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2018.1498132 |