|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM28621296X |
003 |
DE-627 |
005 |
20231225051155.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201801661
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0954.xml
|
035 |
|
|
|a (DE-627)NLM28621296X
|
035 |
|
|
|a (NLM)29978514
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kirmani, Ahmad R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.09.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Colloidal quantum dot (CQD) solar cells have risen rapidly in performance; however, their low-cost fabrication under realistic ambient conditions remains elusive. This study uncovers that humid environments curtail the power conversion efficiency (PCE) of solar cells by preventing the needed oxygen doping of the hole transporter during ambient fabrication. A simple oxygen-doping step enabling ambient manufacturing irrespective of seasonal humidity variations is devised. Solar cells with PCE > 10% are printed under high humidity at industrially viable speeds. The devices use a tiny fraction of the ink typically needed and are air stable over a year. The humidity-resilient fabrication of efficient CQD solar cells breaks a long-standing compromise, which should accelerate commercialization
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a blade coating
|
650 |
|
4 |
|a colloidal quantum dots
|
650 |
|
4 |
|a humidity
|
650 |
|
4 |
|a oxygen doping
|
650 |
|
4 |
|a solar cells
|
700 |
1 |
|
|a Sheikh, Arif D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niazi, Muhammad R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Haque, Md Azimul
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Mengxia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a de Arquer, F Pelayo García
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Jixian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Voznyy, Oleksandr
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gasparini, Nicola
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Baran, Derya
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Tom
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sargent, Edward H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Amassian, Aram
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 35 vom: 05. Aug., Seite e1801661
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:35
|g day:05
|g month:08
|g pages:e1801661
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201801661
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 35
|b 05
|c 08
|h e1801661
|