Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 04. Juli, Seite e1801548
1. Verfasser: Yang, Jing-Ting (VerfasserIn)
Weitere Verfasser: Ge, Chen, Du, Jian-Yu, Huang, He-Yi, He, Meng, Wang, Can, Lu, Hui-Bin, Yang, Guo-Zhen, Jin, Kui-Juan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article artificial synapse electrolyte gating synaptic transistor tungsten oxide films
LEADER 01000caa a22002652 4500
001 NLM286174154
003 DE-627
005 20240229161817.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201801548  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286174154 
035 |a (NLM)29974526 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Jing-Ting  |e verfasserin  |4 aut 
245 1 0 |a Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Considering that the human brain uses ≈1015 synapses to operate, the development of effective artificial synapses is essential to build brain-inspired computing systems. In biological synapses, the voltage-gated ion channels are very important for regulating the action-potential firing. Here, an electrolyte-gated transistor using WO3 with a unique tunnel structure, which can emulate the ionic modulation process of biological synapses, is proposed. The transistor successfully realizes synaptic functions of both short-term and long-term plasticity. Short-term plasticity is mimicked with the help of electrolyte ion dynamics under low electrical bias, whereas the long-term plasticity is realized using proton insertion in WO3 under high electrical bias. This is a new working approach to control the transition from short-term memory to long-term memory using different gate voltage amplitude for artificial synapses. Other essential synaptic behaviors, such as paired pulse facilitation, the depression and potentiation of synaptic weight, as well as spike-timing-dependent plasticity are also implemented in this artificial synapse. These results provide a new recipe for designing synaptic electrolyte-gated transistors through the electrostatic and electrochemical effects 
650 4 |a Journal Article 
650 4 |a artificial synapse 
650 4 |a electrolyte gating 
650 4 |a synaptic transistor 
650 4 |a tungsten oxide films 
700 1 |a Ge, Chen  |e verfasserin  |4 aut 
700 1 |a Du, Jian-Yu  |e verfasserin  |4 aut 
700 1 |a Huang, He-Yi  |e verfasserin  |4 aut 
700 1 |a He, Meng  |e verfasserin  |4 aut 
700 1 |a Wang, Can  |e verfasserin  |4 aut 
700 1 |a Lu, Hui-Bin  |e verfasserin  |4 aut 
700 1 |a Yang, Guo-Zhen  |e verfasserin  |4 aut 
700 1 |a Jin, Kui-Juan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2018) vom: 04. Juli, Seite e1801548  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2018  |g day:04  |g month:07  |g pages:e1801548 
856 4 0 |u http://dx.doi.org/10.1002/adma.201801548  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 04  |c 07  |h e1801548