Scalable Online Convolutional Sparse Coding

Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 10 vom: 03. Okt., Seite 4850-4859
1. Verfasser: Wang, Yaqing (VerfasserIn)
Weitere Verfasser: Yao, Quanming, Kwok, James T, Ni, Lionel M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286123703
003 DE-627
005 20231225050947.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2842152  |2 doi 
028 5 2 |a pubmed24n0953.xml 
035 |a (DE-627)NLM286123703 
035 |a (NLM)29969396 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yaqing  |e verfasserin  |4 aut 
245 1 0 |a Scalable Online Convolutional Sparse Coding 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation of the CSC objective so that convolution can be handled easily in the frequency domain, and much smaller history matrices are needed. To solve the resultant optimization problem, we use the alternating direction method of multipliers (ADMMs), and its subproblems have efficient closed-form solutions. Theoretical analysis shows that the learned dictionary converges to a stationary point of the optimization problem. Extensive experiments are performed on both the standard CSC benchmark data sets and much larger data sets such as the ImageNet. Results show that the proposed algorithm outperforms the state-of-the-art batch and online CSC methods. It is more scalable, has faster convergence, and better reconstruction performance 
650 4 |a Journal Article 
700 1 |a Yao, Quanming  |e verfasserin  |4 aut 
700 1 |a Kwok, James T  |e verfasserin  |4 aut 
700 1 |a Ni, Lionel M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 10 vom: 03. Okt., Seite 4850-4859  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:10  |g day:03  |g month:10  |g pages:4850-4859 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2842152  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 10  |b 03  |c 10  |h 4850-4859