Accurate Light Field Depth Estimation With Superpixel Regularization Over Partially Occluded Regions

Depth estimation is a fundamental problem for light field photography applications. Numerous methods have been proposed in recent years, which either focus on crafting cost terms for more robust matching, or on analyzing the geometry of scene structures embedded in the epipolar-plane images. Signifi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 10 vom: 03. Okt., Seite 4889-4900
Auteur principal: Chen, Jie (Auteur)
Autres auteurs: Hou, Junhui, Ni, Yun, Chau, Lap-Pui
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286123665
003 DE-627
005 20250223183242.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2839524  |2 doi 
028 5 2 |a pubmed25n0953.xml 
035 |a (DE-627)NLM286123665 
035 |a (NLM)29969399 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Jie  |e verfasserin  |4 aut 
245 1 0 |a Accurate Light Field Depth Estimation With Superpixel Regularization Over Partially Occluded Regions 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Depth estimation is a fundamental problem for light field photography applications. Numerous methods have been proposed in recent years, which either focus on crafting cost terms for more robust matching, or on analyzing the geometry of scene structures embedded in the epipolar-plane images. Significant improvements have been made in terms of overall depth estimation error; however, current state-of-the-art methods still show limitations in handling intricate occluding structures and complex scenes with multiple occlusions. To address these challenging issues, we propose a very effective depth estimation framework which focuses on regularizing the initial label confidence map and edge strength weights. Specifically, we first detect partially occluded boundary regions (POBR) via superpixel-based regularization. Series of shrinkage/reinforcement operations are then applied on the label confidence map and edge strength weights over the POBR. We show that after weight manipulations, even a low-complexity weighted least squares model can produce much better depth estimation than the state-of-the-art methods in terms of average disparity error rate, occlusion boundary precision-recall rate, and the preservation of intricate visual features 
650 4 |a Journal Article 
700 1 |a Hou, Junhui  |e verfasserin  |4 aut 
700 1 |a Ni, Yun  |e verfasserin  |4 aut 
700 1 |a Chau, Lap-Pui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 10 vom: 03. Okt., Seite 4889-4900  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:10  |g day:03  |g month:10  |g pages:4889-4900 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2839524  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 10  |b 03  |c 10  |h 4889-4900