Comparing aryltetralin lignan accumulation patterns in four biotechnological systems of Linum album

Copyright © 2018 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 228(2018) vom: 30. Sept., Seite 197-207
1. Verfasser: Lalaleo, Liliana (VerfasserIn)
Weitere Verfasser: Alcazar, Rubén, Palazon, Javier, Moyano, Elisabeth, Cusido, Rosa M, Bonfill, Mercedes
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Cell suspension culture Coronatine Hairy roots Linum album Methoxypodophyllotoxin Podophyllotoxin Amino Acids Indenes Lignans mehr... coronatine 62251-96-1
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier GmbH. All rights reserved.
Linum album is a herbaceous plant with medical interest due to its content of podophyllotoxin (PTOX), an aryltetralin lignan with cytotoxic activity. Previous studies in our laboratory showed that cell suspension cultures of L. album produced more PTOX than methoxypodophyllotoxin (6-MPTOX), both lignans being formed from the same precursor after divergence close to the end of the biosynthetic pathway. In contrast, the hairy roots produced more 6-MPTOX than PTOX. Taking into account this variability, we were interested to know if the lignan profile of an in vitro PTOX-producing L. album plant changes according to the biotechnological system employed and, if so, if this is due to cell dedifferentiation and/or transformation events. With this aim, we established four biotechnological systems: (1) Wild type cell suspensions, (2) transformed cell suspensions, (3) adventitious roots and (4) hairy roots. We determined the production of four aryltetralin lignans: PTOX, 6-MPTOX, deoxypodophyllotoxin (dPTOX) and β-peltatin. The results show that in vitro plantlets, WT cells and transformed cells predominantly produced PTOX, production being 11-fold higher in the plantlets. Otherwise, the adventitious and hairy roots predominantly produced 6-MPTOX, the adventitious roots being the most productive, with MPTOX levels 1.58-fold higher than in transformed roots. We can infer from these results that in the studied plants, cell differentiation promoted the formation of 6-MPTOX over PTOX, while transformation did not influence the lignan pattern
Beschreibung:Date Completed 26.10.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2018.06.006