Community- and ecosystem-level effects of multiple environmental change drivers : Beyond null model testing

© 2018 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 11 vom: 17. Nov., Seite 5021-5030
1. Verfasser: De Laender, Frederik (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article community ecology ecosystems environmental stress eutrophication multiple stressors resource-ratio theory theoretical ecology traits
LEADER 01000naa a22002652 4500
001 NLM286029367
003 DE-627
005 20231225050732.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14382  |2 doi 
028 5 2 |a pubmed24n0953.xml 
035 |a (DE-627)NLM286029367 
035 |a (NLM)29959825 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a De Laender, Frederik  |e verfasserin  |4 aut 
245 1 0 |a Community- and ecosystem-level effects of multiple environmental change drivers  |b Beyond null model testing 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.02.2019 
500 |a Date Revised 15.02.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 John Wiley & Sons Ltd. 
520 |a Understanding the joint effect of multiple drivers of environmental change is a key scientific challenge. The dominant approach today is to compare observed joint effects with predictions from various types of null models. Drivers are said to combine synergistically (antagonistically) when their observed joint effect is larger (smaller) than that predicted by the null model. Here, I argue that this approach does not promote understanding of effects on important community- and ecosystem-level variables such as biodiversity and ecosystem function. I use ecological theory to show that different mechanisms can lead to the same deviation from a null model's prediction. Inversely, I show that the same mechanism can lead to different deviations from a null model's prediction. These examples illustrate that it is not possible to make strong mechanistic inferences from null models. Next, I present an alternative framework to study such effects. This framework makes a clear distinction between two different kinds of drivers (resource ratio shifts and multiple stressors) and integrates both by incorporating stressor effects into resource uptake theory. I show that this framework can advance understanding because of three reasons. First, it forces formalization of "multiple stressors," using factors that describe the number and kind of stressors, their selectivity and dynamic behaviour, and the initial trait diversity and tolerance among species. Second, it produces testable predictions on how these factors affect biodiversity and ecosystem function, alone and in combination with resource ratio shifts. Third, it can fail in informative ways. That is, its assumptions are clear, so that different kinds of deviations between predictions and observed effects can guide new experiments and theory improvement. I conclude that this framework will more effectively progress understanding of global change effects on communities and ecosystems than does the current practice of null model testing 
650 4 |a Journal Article 
650 4 |a community ecology 
650 4 |a ecosystems 
650 4 |a environmental stress 
650 4 |a eutrophication 
650 4 |a multiple stressors 
650 4 |a resource-ratio theory 
650 4 |a theoretical ecology 
650 4 |a traits 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 11 vom: 17. Nov., Seite 5021-5030  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:11  |g day:17  |g month:11  |g pages:5021-5030 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14382  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 11  |b 17  |c 11  |h 5021-5030