Hyperporous Sponge Interconnected by Hierarchical Carbon Nanotubes as a High-Performance Potassium-Ion Battery Anode
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 32 vom: 17. Aug., Seite e1802074 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article K-ion batteries hierarchical carbon nanotubes hyperporous sponges structure stability |
Résumé: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Recently, commercial graphite and other carbon-based materials have shown promising properties as the anode for potassium-ion batteries. A fundamental problem related to those carbon electrodes, significant volume expansion, and structural instability/collapsing caused by cyclic K-ion intercalation, remains unsolved and severely limits further development and applications of K-ion batteries. Here, a multiwalled hierarchical carbon nanotube (HCNT) is reported to address the issue, and a reversible specific capacity of 232 mAh g-1 , excellent rate capability, and cycling stability for 500 cycles are achieved. The key structure of the HCNTs consists of an inner CNT with dense-stacked graphitic walls and a loose-stacked outer CNT with more disordered walls, and individual HCNTs are further interconnected into a hyperporous bulk sponge with huge macropore volume, high conductivity, and tunable modulus. It is discovered that the inner dense-CNT serves as a robust skeleton, and collectively, the outer loose-CNT is beneficial for K-ion accommodation; meanwhile the hyperporous sponge facilitates reaction kinetics and offers stable surface capacitive behavior. The hierarchical carbon nanotube structure has great potential in developing high-performance and stable-structure electrodes for next generation K and other metal-ion batteries |
---|---|
Description: | Date Completed 21.08.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201802074 |