|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM285903853 |
003 |
DE-627 |
005 |
20231225050457.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201801481
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0953.xml
|
035 |
|
|
|a (DE-627)NLM285903853
|
035 |
|
|
|a (NLM)29947089
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Kaiyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dark-Field Sensors based on Organometallic Halide Perovskite Microlasers
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The detection of nanoscale objects is essential for homeland security, environmental monitoring, and early-stage diagnostics. In the past few years, optical sensors have mostly been developed with passive devices such as microcavity and plasmonic nanostructures, which require external laser sources to operate and significantly increase the costs and bulks of sensing systems. To date, the potential of their active counterparts in optical sensors has not been well explored. Herein, a novel and robust mechanism to detect nanoscale objects with lead halide perovskite microlasers is demonstrated. Nanoparticles can be simply detected and sized by measuring the intensity of scattered laser light. In principle, the proposed concept is also applicable to electrically driven microlasers and it could find applications in portable point-of-care devices
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a dark-field sensors
|
650 |
|
4 |
|a lead halide perovskites
|
650 |
|
4 |
|a microlasers
|
650 |
|
4 |
|a nanoparticle detection
|
700 |
1 |
|
|a Li, Gang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Wenzhao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Can
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yujie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Qinghai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Shumin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 32 vom: 12. Aug., Seite e1801481
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:32
|g day:12
|g month:08
|g pages:e1801481
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201801481
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 32
|b 12
|c 08
|h e1801481
|