|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM285830392 |
003 |
DE-627 |
005 |
20231225050318.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201801884
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0952.xml
|
035 |
|
|
|a (DE-627)NLM285830392
|
035 |
|
|
|a (NLM)29939425
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rao, Ping
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multiscale Design
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.02.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Hydrogels have promising applications in diverse areas, especially wet environments including tissue engineering, wound dressing, biomedical devices, and underwater soft robotics. Despite strong demands in such applications and great progress in irreversible bonding of robust hydrogels to diverse synthetic and biological surfaces, tough hydrogels with fast, strong, and reversible underwater adhesion are still not available. Herein, a strategy to develop hydrogels demonstrating such characteristics by combining macroscale surface engineering and nanoscale dynamic bonds is proposed. Based on this strategy, excellent underwater adhesion performance of tough hydrogels with dynamic ionic and hydrogen bonds, on diverse substrates, including hard glasses, soft hydrogels, and biological tissues is obtained. The proposed strategy can be generalized to develop other soft materials with underwater adhesion
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a dynamic bonds
|
650 |
|
4 |
|a fast and reversible
|
650 |
|
4 |
|a multiscale designs
|
650 |
|
4 |
|a tough hydrogels
|
650 |
|
4 |
|a underwater adhesion
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
650 |
|
7 |
|a Ions
|2 NLM
|
700 |
1 |
|
|a Sun, Tao Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Liang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Takahashi, Riku
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shinohara, Gento
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a King, Daniel R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kurokawa, Takayuki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gong, Jian Ping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 32 vom: 25. Aug., Seite e1801884
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:32
|g day:25
|g month:08
|g pages:e1801884
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201801884
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 32
|b 25
|c 08
|h e1801884
|