|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM285754114 |
003 |
DE-627 |
005 |
20231225050131.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201801357
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0952.xml
|
035 |
|
|
|a (DE-627)NLM285754114
|
035 |
|
|
|a (NLM)29931697
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Burton, Matthew R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b-axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m-1 K-1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a nanosheets
|
650 |
|
4 |
|a thermal conductivity
|
650 |
|
4 |
|a thermoelectrics
|
650 |
|
4 |
|a thin films
|
650 |
|
4 |
|a tin selenide
|
700 |
1 |
|
|a Liu, Tianjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McGettrick, James
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mehraban, Shahin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Baker, Jenny
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pockett, Adam
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Watson, Trystan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fenwick, Oliver
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Carnie, Matthew J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 31 vom: 10. Aug., Seite e1801357
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:31
|g day:10
|g month:08
|g pages:e1801357
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201801357
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 31
|b 10
|c 08
|h e1801357
|