Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research

© 2018 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 11 vom: 19. Nov., Seite 5281-5291
1. Verfasser: Soroye, Peter (VerfasserIn)
Weitere Verfasser: Ahmed, Najeeba, Kerr, Jeremy T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't biodiversity biomonitoring citizen science climate change global change phenology species distributions species richness
LEADER 01000naa a22002652 4500
001 NLM285647636
003 DE-627
005 20231225045905.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14358  |2 doi 
028 5 2 |a pubmed24n0952.xml 
035 |a (DE-627)NLM285647636 
035 |a (NLM)29920854 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Soroye, Peter  |e verfasserin  |4 aut 
245 1 0 |a Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.01.2019 
500 |a Date Revised 22.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 John Wiley & Sons Ltd. 
520 |a Opportunistic citizen science (CS) programs allow volunteers to report species observations from anywhere, at any time, and can assemble large volumes of historic and current data at faster rates than more coordinated programs with standardized data collection. This can quickly provide large amounts of species distributional data, but whether this focus on participation comes at a cost in data quality is not clear. Although automated and expert vetting can increase data reliability, there is no guarantee that opportunistic data will do anything more than confirm information from professional surveys. Here, we use eButterfly, an opportunistic CS program, and a comparable dataset of professionally collected observations, to measure the amount of new distributional species information that opportunistic CS generates. We also test how well opportunistic CS can estimate regional species richness for a large group of taxa (>300 butterfly species) across a broad area. We find that eButterfly contributes new distributional information for >80% of species, and that opportunistically submitting observations allowed volunteers to spot species ~35 days earlier than professionals. Although eButterfly did a relatively poor job at predicting regional species richness by itself (detecting only about 35-57% of species per region), it significantly contributed to regional species richness when used with the professional dataset (adding ~3 species that had gone undetected in professional surveys per region). Overall, we find that the opportunistic CS model can provide substantial complementary species information when used alongside professional survey data. Our results suggest that data from opportunistic CS programs in conjunction with professional datasets can strongly increase the capacity of researchers to estimate species richness, and provide unique information on species distributions and phenologies that are relevant to the detection of the biological consequences of global change 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a biodiversity 
650 4 |a biomonitoring 
650 4 |a citizen science 
650 4 |a climate change 
650 4 |a global change 
650 4 |a phenology 
650 4 |a species distributions 
650 4 |a species richness 
700 1 |a Ahmed, Najeeba  |e verfasserin  |4 aut 
700 1 |a Kerr, Jeremy T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 11 vom: 19. Nov., Seite 5281-5291  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:11  |g day:19  |g month:11  |g pages:5281-5291 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14358  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 11  |b 19  |c 11  |h 5281-5291