Disruption of Tumor Cells Using a pH-Activated and Thermosensitive Antitumor Lipopeptide Containing a Leucine Zipper Structure
Antitumor peptides may potentially alleviate the problem of chemoresistance but do not yet target tumor cells and would be cytotoxic to normal cells. Here, we designed a pH-activated and thermosensitive lipopeptide (C6-Pep) containing a leucine zipper and an alkyl chain and assessed the ability of C...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 34(2018), 30 vom: 31. Juli, Seite 8818-8827 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Antineoplastic Agents Lipopeptides Liposomes |
Zusammenfassung: | Antitumor peptides may potentially alleviate the problem of chemoresistance but do not yet target tumor cells and would be cytotoxic to normal cells. Here, we designed a pH-activated and thermosensitive lipopeptide (C6-Pep) containing a leucine zipper and an alkyl chain and assessed the ability of C6-Pep to kill cancer cells. Pep, the same sequence without the N-terminal hexanoic acid moiety, was generated as a less hydrophobic control. First, lipopeptide adsorption into lipid monolayers was studied using Langmuir-Blodgett and polarization modulation infrared reflection adsorption spectroscopy. Under weakly acid conditions, electrostatic interactions between C6-Pep and negatively charged phospholipids increased the adsorption/insertion of C6-Pep (vs Pep) into lipid monolayers. Cargo leakage from liposomes was assayed to model lipopeptide-induced lipid membrane disruption. The ability of C6-Pep to disrupt liposomes depended on the peptide molecular structure/hydrophobicity, solution pH, and temperature-induced uncoiling of the zipper structure; the greatest cargo leakage from the liposome with negative charge was observed for C6-Pep at pH 5.5 under mildly hyperthermic conditions (45 °C). In vitro, C6-Pep was significantly more cytotoxic toward HeLa cells at pH 5.5 under hyperthermic conditions than at pH 7.4 and/or 37 °C. Overall, this study demonstrates that amphipathic C6-Pep can insert into cell membranes in the low-pH tumor microenvironment, whereas the application of heat promotes the uncoiling of the zipper structure, leading to the disruption of tumor cell membranes and cell death. pH-activated and thermosensitive C6-Pep represents a promising tool to kill cancer cells via a strategy that does not invoke chemoresistance and may have low side effects |
---|---|
Beschreibung: | Date Completed 22.03.2019 Date Revised 22.03.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b00474 |