Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI

Bismuth-based solar absorbers have recently garnered attention due to their promise as cheap, nontoxic, and efficient photovoltaics. To date, however, most show poor efficiencies far below those seen in commercial technologies. In this work, we investigate two such promising materials, BiSI and BiSe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 30(2018), 11 vom: 12. Juni, Seite 3827-3835
1. Verfasser: Ganose, Alex M (VerfasserIn)
Weitere Verfasser: Matsumoto, Saya, Buckeridge, John, Scanlon, David O
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Bismuth-based solar absorbers have recently garnered attention due to their promise as cheap, nontoxic, and efficient photovoltaics. To date, however, most show poor efficiencies far below those seen in commercial technologies. In this work, we investigate two such promising materials, BiSI and BiSeI, using relativistic first-principles methods with the aim of identifying their suitability for photovoltaic applications. Both compounds show excellent optoelectronic properties with ideal band gaps and strong optical absorption, leading to high predicted device performance. Using defect analysis, we reveal the electronic and structural effects that can lead to the presence of deep trap states, which may help explain the prior poor performance of these materials. Crucially, detailed mapping of the range of experimentally accessible synthesis conditions allows us to provide strategies to avoid the formation of killer defects in the future
Beschreibung:Date Revised 09.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.8b01135