|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM285492500 |
003 |
DE-627 |
005 |
20240229161735.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201706364
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM285492500
|
035 |
|
|
|a (NLM)29904984
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Ao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Solution Processed Metal Oxide High-κ Dielectrics for Emerging Transistors and Circuits
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The electronic functionalities of metal oxides comprise conductors, semiconductors, and insulators. Metal oxides have attracted great interest for construction of large-area electronics, particularly thin-film transistors (TFTs), for their high optical transparency, excellent chemical and thermal stability, and mechanical tolerance. High-permittivity (κ) oxide dielectrics are a key component for achieving low-voltage and high-performance TFTs. With the expanding integration of complementary metal oxide semiconductor transistors, the replacement of SiO2 with high-κ oxide dielectrics has become urgently required, because their provided thicker layers suppress quantum mechanical tunneling. Toward low-cost devices, tremendous efforts have been devoted to vacuum-free, solution processable fabrication, such as spin coating, spray pyrolysis, and printing techniques. This review focuses on recent progress in solution processed high-κ oxide dielectrics and their applications to emerging TFTs. First, the history, basics, theories, and leakage current mechanisms of high-κ oxide dielectrics are presented, and the underlying mechanism for mobility enhancement over conventional SiO2 is outlined. Recent achievements of solution-processed high-κ oxide materials and their applications in TFTs are summarized and traditional coating methods and emerging printing techniques are introduced. Finally, low temperature approaches, e.g., ecofriendly water-induced, self-combustion reaction, and energy-assisted post treatments, for the realization of flexible electronics and circuits are discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a field-effect transistors
|
650 |
|
4 |
|a high-κ dielectrics
|
650 |
|
4 |
|a metal oxide insulator
|
650 |
|
4 |
|a solution processing
|
650 |
|
4 |
|a thin-film transistors
|
700 |
1 |
|
|a Zhu, Huihui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Huabin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Noh, Yong-Young
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2018) vom: 14. Juni, Seite e1706364
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2018
|g day:14
|g month:06
|g pages:e1706364
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201706364
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2018
|b 14
|c 06
|h e1706364
|