High-Throughput Continuous Production of Shear-Exfoliated 2D Layered Materials using Compressible Flows

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 30 vom: 12. Juli, Seite e1800200
1. Verfasser: Rizvi, Reza (VerfasserIn)
Weitere Verfasser: Nguyen, Emily P, Kowal, Matthew D, Mak, Wai H, Rasel, Sheikh, Islam, Md Akibul, Abdelaal, Ahmed, Joshi, Anup S, Zekriardehani, Shahab, Coleman, Maria R, Kaner, Richard B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials boron nitride compressible flow exfoliation graphene
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2D nanomaterials are finding numerous applications in next-generation electronics, consumer goods, energy generation and storage, and healthcare. The rapid rise of utility and applications for 2D nanomaterials necessitates developing means for their mass production. This study details a new compressible flow exfoliation method for producing 2D nanomaterials using a multiphase flow of 2D layered materials suspended in a high-pressure gas undergoing expansion. The expanded gas-solid mixture is sprayed in a suitable solvent, where a significant portion (up to 10% yield) of the initial hexagonal boron nitride material is found to be exfoliated with a mean thickness of 4.2 nm. The exfoliation is attributed to the high shear rates (γ˙ > 105 s-1 ) generated by supersonic flow of compressible gases inside narrow orifices and converging-diverging channels. This method has significant advantages over current 2D material exfoliation methods, such as chemical intercalation and exfoliation, as well as liquid phase shear exfoliation, with the most obvious benefit being the fast, continuous nature of the process. Other advantages include environmentally friendly processing, reduced occurrence of defects, and the versatility to be applied to any 2D layered material using any gaseous medium. Scaling this process to industrial production has a strong possibility of reducing the cost of creating 2D nanomaterials
Beschreibung:Date Completed 24.08.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201800200