Traits drive global wood decomposition rates more than climate

© 2018 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 11 vom: 20. Nov., Seite 5259-5269
1. Verfasser: Hu, Zhenhong (VerfasserIn)
Weitere Verfasser: Michaletz, Sean T, Johnson, Daniel J, McDowell, Nate G, Huang, Zhiqun, Zhou, Xuhui, Xu, Chonggang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. carbon cycling metabolic scaling theory wood decomposition wood diameter wood nitrogen Carbon 7440-44-0 mehr... Nitrogen N762921K75
Beschreibung
Zusammenfassung:© 2018 John Wiley & Sons Ltd.
Wood decomposition is a major component of the global carbon cycle. Decomposition rates vary across climate gradients, which is thought to reflect the effects of temperature and moisture on the metabolic kinetics of decomposers. However, decomposition rates also vary with wood traits, which may reflect the influence of stoichiometry on decomposer metabolism as well as geometry relating the surface areas that decomposers colonize with the volumes they consume. In this paper, we combined metabolic and geometric scaling theories to formalize hypotheses regarding the drivers of wood decomposition rates, and assessed these hypotheses using a global compilation of data on climate, wood traits, and wood decomposition rates. Our results are consistent with predictions from both metabolic and geometric scaling theories. Approximately half of the global variation in decomposition rates was explained by wood traits (nitrogen content and diameter), whereas only a fifth was explained by climate variables (air temperature, precipitation, and relative humidity). These results indicate that global variation in wood decomposition rates is best explained by stoichiometric and geometric wood traits. Our findings suggest that inclusion of wood traits in global carbon cycle models can improve predictions of carbon fluxes from wood decomposition
Beschreibung:Date Completed 04.02.2019
Date Revised 15.02.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.14357