|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM285449176 |
003 |
DE-627 |
005 |
20231225045453.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201802156
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0951.xml
|
035 |
|
|
|a (DE-627)NLM285449176
|
035 |
|
|
|a (NLM)29900596
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hafez, Ahmed M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Lithium (Li) metal anodes have attracted much interest recently for high-energy battery applications. However, low coulombic efficiency, infinite volume change, and severe dendrite formation limit their reliable implementation over a wide range. Here, an outstanding stability for a Li metal anode is revealed by designing a highly porous and hollow Li foam. This unique structure is capable of tackling many Li metal problems simultaneously: first, it assures uniform electrolyte distribution over the inner and outer electrode's surface; second, it reduces the local current density by providing a larger electroactive surface area; third, it can accommodate volume expansion and dissipate heat efficiently. Moreover, the structure shows superior stability compared to fully Li covered foam with low porosity, and bulky Li foil electrode counterparts. This Li foam exhibits small overpotential (≈25 mV at 4 mA cm-2 ) and high cycling stability for 160 cycles at 4 mA cm-2 . Furthermore, when assembled, the porous Li metal as the anode with LiFePO4 as the cathode for a full cell, the battery has a high-rate performance of 138 mAh g-1 at 0.2 C. The beneficial structure of the Li hollow foam is further studied through density functional theory simulations, which confirms that the porous structure has better charge mobility and more uniform Li deposition
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a charge distribution
|
650 |
|
4 |
|a dendrite suppression
|
650 |
|
4 |
|a density functional theory
|
650 |
|
4 |
|a ion diffusion
|
650 |
|
4 |
|a lithium metal anodes
|
650 |
|
4 |
|a porous lithium foams
|
700 |
1 |
|
|a Jiao, Yucong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Jianjian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Daxian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yuanyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Hongli
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 30 vom: 13. Juli, Seite e1802156
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:30
|g day:13
|g month:07
|g pages:e1802156
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201802156
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 30
|b 13
|c 07
|h e1802156
|