Quantitatively Identifying the Roles of Interfacial Water and Solid Surface in Governing Peptide Adsorption

Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Although the water phase at the surface/water interface has been recognized as three types: bulk water, intermediate water phase and surface-bound wa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 26 vom: 03. Juli, Seite 7932-7941
1. Verfasser: Xu, Zhijun (VerfasserIn)
Weitere Verfasser: Yang, Xiao, Wei, Qichao, Zhao, Weilong, Cui, Beiliang, Yang, Xiaoning, Sahai, Nita
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Peptides Water 059QF0KO0R
LEADER 01000naa a22002652 4500
001 NLM28533445X
003 DE-627
005 20231225045223.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.8b01189  |2 doi 
028 5 2 |a pubmed24n0951.xml 
035 |a (DE-627)NLM28533445X 
035 |a (NLM)29888924 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Zhijun  |e verfasserin  |4 aut 
245 1 0 |a Quantitatively Identifying the Roles of Interfacial Water and Solid Surface in Governing Peptide Adsorption 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.03.2019 
500 |a Date Revised 22.03.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Although the water phase at the surface/water interface has been recognized as three types: bulk water, intermediate water phase and surface-bound water layers, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution from the surface-peptide interactions is thermodynamically favorable to peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, due to the controlling contribution of peptide-surface interaction in the intermediate water phase. The surface-bound water layers are observed as the origin of bioresistance of solid surfaces toward the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force, in contrast to the observation on the hydrophilic surface 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Peptides  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Yang, Xiao  |e verfasserin  |4 aut 
700 1 |a Wei, Qichao  |e verfasserin  |4 aut 
700 1 |a Zhao, Weilong  |e verfasserin  |4 aut 
700 1 |a Cui, Beiliang  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaoning  |e verfasserin  |4 aut 
700 1 |a Sahai, Nita  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 34(2018), 26 vom: 03. Juli, Seite 7932-7941  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:34  |g year:2018  |g number:26  |g day:03  |g month:07  |g pages:7932-7941 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.8b01189  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 34  |j 2018  |e 26  |b 03  |c 07  |h 7932-7941