Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 30 vom: 08. Juli, Seite e1801401
Auteur principal: Li, Ming-Hsien (Auteur)
Autres auteurs: Yeh, Hung-Hsiang, Chiang, Yu-Hsien, Jeng, U-Ser, Su, Chun-Jen, Shiu, Hung-Wei, Hsu, Yao-Jane, Kosugi, Nobuhiro, Ohigashi, Takuji, Chen, Yu-An, Shen, Po-Shen, Chen, Peter, Guo, Tzung-Fang
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article 2D/3D hybrid perovskites Ruddlesden-Popper perovskites low-temperature vapor-assisted solution processing perovskite solar cells Calcium Compounds Oxides perovskite 12194-71-7 Titanium D1JT611TNE
LEADER 01000caa a22002652 4500
001 NLM285277138
003 DE-627
005 20250223160052.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201801401  |2 doi 
028 5 2 |a pubmed25n0950.xml 
035 |a (DE-627)NLM285277138 
035 |a (NLM)29883002 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Ming-Hsien  |e verfasserin  |4 aut 
245 1 0 |a Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2019 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA2 MAn-1 Pbn I3n+1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm-2 , and a remarkable fill factor of 80.36% 
650 4 |a Journal Article 
650 4 |a 2D/3D hybrid perovskites 
650 4 |a Ruddlesden-Popper perovskites 
650 4 |a low-temperature vapor-assisted solution processing 
650 4 |a perovskite solar cells 
650 7 |a Calcium Compounds  |2 NLM 
650 7 |a Oxides  |2 NLM 
650 7 |a perovskite  |2 NLM 
650 7 |a 12194-71-7  |2 NLM 
650 7 |a Titanium  |2 NLM 
650 7 |a D1JT611TNE  |2 NLM 
700 1 |a Yeh, Hung-Hsiang  |e verfasserin  |4 aut 
700 1 |a Chiang, Yu-Hsien  |e verfasserin  |4 aut 
700 1 |a Jeng, U-Ser  |e verfasserin  |4 aut 
700 1 |a Su, Chun-Jen  |e verfasserin  |4 aut 
700 1 |a Shiu, Hung-Wei  |e verfasserin  |4 aut 
700 1 |a Hsu, Yao-Jane  |e verfasserin  |4 aut 
700 1 |a Kosugi, Nobuhiro  |e verfasserin  |4 aut 
700 1 |a Ohigashi, Takuji  |e verfasserin  |4 aut 
700 1 |a Chen, Yu-An  |e verfasserin  |4 aut 
700 1 |a Shen, Po-Shen  |e verfasserin  |4 aut 
700 1 |a Chen, Peter  |e verfasserin  |4 aut 
700 1 |a Guo, Tzung-Fang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 30 vom: 08. Juli, Seite e1801401  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:30  |g day:08  |g month:07  |g pages:e1801401 
856 4 0 |u http://dx.doi.org/10.1002/adma.201801401  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 30  |b 08  |c 07  |h e1801401