Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 129(2018) vom: 15. Aug., Seite 109-121
1. Verfasser: Fagundes-Nacarath, I R F (VerfasserIn)
Weitere Verfasser: Debona, D, Rodrigues, F A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Antioxidant system Chlorophyll a fluorescence Leaf gas exchange Phaseolus vulgaris Photosynthesis White mold Superoxides 11062-77-4 Carotenoids mehr... 36-88-4 Malondialdehyde 4Y8F71G49Q Oxalic Acid 9E7R5L6H31 Hydrogen Peroxide BBX060AN9V Ascorbate Peroxidases EC 1.11.1.11 Catalase EC 1.11.1.6 Peroxidase EC 1.11.1.7 Superoxide Dismutase EC 1.15.1.1 Chlorophyll A YF5Q9EJC8Y
LEADER 01000naa a22002652 4500
001 NLM285158058
003 DE-627
005 20231225044817.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2018.05.028  |2 doi 
028 5 2 |a pubmed24n0950.xml 
035 |a (DE-627)NLM285158058 
035 |a (NLM)29870862 
035 |a (PII)S0981-9428(18)30245-6 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fagundes-Nacarath, I R F  |e verfasserin  |4 aut 
245 1 0 |a Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.02.2019 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2018 Elsevier Masson SAS. All rights reserved. 
520 |a The success of Sclerotinia sclerotiorum infection relies mainly on the production of the non-host selective toxin named oxalic acid (OA). This toxin is known to play multiple roles in a host infected by the fungus, but its effect on photosynthesis and the antioxidant system of common bean plants remain elusive. Therefore, we performed detailed analysis of leaf gas exchange, chlorophyll a fluorescence, activities of antioxidant enzymes, concentrations of reactive oxygen species and photosynthetic pigments to investigate the OA's role during the S. sclerotiorum pathogenesis. To achieve this goal, common bean plants were sprayed with water or with oxalic acid (referred to as -OA and +OA plants, respectively) and either non-challenged or challenged with a wild-type (WT) or an OA-defective mutant (A4) of S. sclerotiorum. Irrespective of OA spray, the WT isolate was more aggressive than the A4 isolate and spraying OA increased OA concentration in the leaflets as well as the aggressiveness of both isolates. Biochemical limitations were behind S. sclerotiorum-induced photosynthetic impairments notably for the +OA plants inoculated with the WT isolate. Inoculated plants were not able to fully capture and exploit the collected energy due to the degradation of photosynthetic pigments. Photoinhibition of photosynthesis and photochemical dysfunctions were potentiated by OA. Higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase besides reductions on catalase activity were noticed for plants inoculated with the WT isolate. OA was able to counteract most of the increases in the activities of antioxidant enzymes thereby increasing the generation of superoxide and hydrogen peroxide and the concurrent damage to the membranes of host cells as evidenced by the high malondialdehyde concentration. In conclusion, OA was found to enhance biochemical limitations to photosynthesis, photochemical dysfunctions and oxidative stress in the leaflets of common bean plants infected by S. sclerotiorum 
650 4 |a Journal Article 
650 4 |a Antioxidant system 
650 4 |a Chlorophyll a fluorescence 
650 4 |a Leaf gas exchange 
650 4 |a Phaseolus vulgaris 
650 4 |a Photosynthesis 
650 4 |a White mold 
650 7 |a Superoxides  |2 NLM 
650 7 |a 11062-77-4  |2 NLM 
650 7 |a Carotenoids  |2 NLM 
650 7 |a 36-88-4  |2 NLM 
650 7 |a Malondialdehyde  |2 NLM 
650 7 |a 4Y8F71G49Q  |2 NLM 
650 7 |a Oxalic Acid  |2 NLM 
650 7 |a 9E7R5L6H31  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Ascorbate Peroxidases  |2 NLM 
650 7 |a EC 1.11.1.11  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Peroxidase  |2 NLM 
650 7 |a EC 1.11.1.7  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a Chlorophyll A  |2 NLM 
650 7 |a YF5Q9EJC8Y  |2 NLM 
700 1 |a Debona, D  |e verfasserin  |4 aut 
700 1 |a Rodrigues, F A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 129(2018) vom: 15. Aug., Seite 109-121  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:129  |g year:2018  |g day:15  |g month:08  |g pages:109-121 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2018.05.028  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 129  |j 2018  |b 15  |c 08  |h 109-121