Cross-Paced Representation Learning With Partial Curricula for Sketch-Based Image Retrieval

In this paper, we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While, most SBIR approaches focus on extracting low- and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 9 vom: 01. Sept., Seite 4410-4421
1. Verfasser: Xu, Dan (VerfasserIn)
Weitere Verfasser: Alameda-Pineda, Xavier, Song, Jingkuan, Ricci, Elisa, Sebe, Nicu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM285153145
003 DE-627
005 20231225044810.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2837381  |2 doi 
028 5 2 |a pubmed24n0950.xml 
035 |a (DE-627)NLM285153145 
035 |a (NLM)29870357 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Dan  |e verfasserin  |4 aut 
245 1 0 |a Cross-Paced Representation Learning With Partial Curricula for Sketch-Based Image Retrieval 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While, most SBIR approaches focus on extracting low- and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature representations to describe data from two related sources. However, cross-domain representation learning methods are typically cast into non-convex minimization problems that are difficult to optimize, leading to unsatisfactory performance. Inspired by self-paced learning (SPL), a learning methodology designed to overcome convergence issues related to local optima by exploiting the samples in a meaningful order (i.e., easy to hard), we introduce the cross-paced partial curriculum learning (CPPCL) framework. Compared with existing SPL methods which only consider a single modality and cannot deal with prior knowledge, CPPCL is specifically designed to assess the learning pace by jointly handling data from dual sources and modality-specific prior information provided in the form of partial curricula. In addition, thanks to the learned dictionaries, we demonstrate that the proposed CPPCL embeds robust coupled representations for SBIR. Our approach is extensively evaluated on four publicly available datasets (i.e., CUFS, Flickr15K, QueenMary SBIR, and TU-Berlin Extension datasets), showing superior performance over competing SBIR methods 
650 4 |a Journal Article 
700 1 |a Alameda-Pineda, Xavier  |e verfasserin  |4 aut 
700 1 |a Song, Jingkuan  |e verfasserin  |4 aut 
700 1 |a Ricci, Elisa  |e verfasserin  |4 aut 
700 1 |a Sebe, Nicu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 9 vom: 01. Sept., Seite 4410-4421  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:9  |g day:01  |g month:09  |g pages:4410-4421 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2837381  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 9  |b 01  |c 09  |h 4410-4421