Multi-Modal Joint Clustering With Application for Unsupervised Attribute Discovery

Utilizing multiple descriptions/views of an object is often useful in image clustering tasks. Despite many works that have been proposed to effectively cluster multi-view data, there are still unaddressed problems such as the errors introduced by the traditional spectral-based clustering methods due...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 9 vom: 01. Sept., Seite 4345-4356
1. Verfasser: Liu, Liangchen (VerfasserIn)
Weitere Verfasser: Nie, Feiping, Wiliem, Arnold, Li, Zhihui, Zhang, Teng, Lovell, Brian C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM285153072
003 DE-627
005 20231225044810.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2831454  |2 doi 
028 5 2 |a pubmed24n0950.xml 
035 |a (DE-627)NLM285153072 
035 |a (NLM)29870352 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Liangchen  |e verfasserin  |4 aut 
245 1 0 |a Multi-Modal Joint Clustering With Application for Unsupervised Attribute Discovery 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Utilizing multiple descriptions/views of an object is often useful in image clustering tasks. Despite many works that have been proposed to effectively cluster multi-view data, there are still unaddressed problems such as the errors introduced by the traditional spectral-based clustering methods due to the two disjoint stages: 1) eigendecomposition and 2) the discretization of new representations. In this paper, we propose a unified clustering framework which jointly learns the two stages together as well as utilizing multiple descriptions of the data. More specifically, two learning methods from this framework are proposed: 1) through a graph construction from different views and 2) through combining multiple graphs. Furthermore, benefiting from the separability and local graph preserving properties of the proposed methods, a novel unsupervised automatic attribute discovery method is proposed. We validate the efficacy of our methods on five data sets, showing that the proposed joint learning clustering methods outperform the recent state-of-the-art methods. We also show that it is possible to derive a novel method to address the unsupervised automatic attribute discovery tasks 
650 4 |a Journal Article 
700 1 |a Nie, Feiping  |e verfasserin  |4 aut 
700 1 |a Wiliem, Arnold  |e verfasserin  |4 aut 
700 1 |a Li, Zhihui  |e verfasserin  |4 aut 
700 1 |a Zhang, Teng  |e verfasserin  |4 aut 
700 1 |a Lovell, Brian C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 9 vom: 01. Sept., Seite 4345-4356  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:9  |g day:01  |g month:09  |g pages:4345-4356 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2831454  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 9  |b 01  |c 09  |h 4345-4356