LFNet : A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution

The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate context...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 9 vom: 01. Sept., Seite 4274-4286
1. Verfasser: Wang, Yunlong (VerfasserIn)
Weitere Verfasser: Liu, Fei, Zhang, Kunbo, Hou, Guangqi, Sun, Zhenan, Tan, Tieniu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM285153021
003 DE-627
005 20250223154230.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2834819  |2 doi 
028 5 2 |a pubmed25n0950.xml 
035 |a (DE-627)NLM285153021 
035 |a (NLM)29870347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yunlong  |e verfasserin  |4 aut 
245 1 0 |a LFNet  |b A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation 
650 4 |a Journal Article 
700 1 |a Liu, Fei  |e verfasserin  |4 aut 
700 1 |a Zhang, Kunbo  |e verfasserin  |4 aut 
700 1 |a Hou, Guangqi  |e verfasserin  |4 aut 
700 1 |a Sun, Zhenan  |e verfasserin  |4 aut 
700 1 |a Tan, Tieniu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 9 vom: 01. Sept., Seite 4274-4286  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:9  |g day:01  |g month:09  |g pages:4274-4286 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2834819  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 9  |b 01  |c 09  |h 4274-4286