Nanostructured Dielectric Fractals on Resonant Plasmonic Metasurfaces for Selective and Sensitive Optical Sensing of Volatile Compounds

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 30 vom: 03. Juli, Seite e1800931
1. Verfasser: Fusco, Zelio (VerfasserIn)
Weitere Verfasser: Rahmani, Mohsen, Bo, Renheng, Verre, Ruggero, Motta, Nunzio, Käll, Mikael, Neshev, Dragomir, Tricoli, Antonio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article VOCs fractals metasurfaces plasmonic sensors selectivity
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advances in the understanding and fabrication of plasmonic nanostructures have led to a plethora of unprecedented optoelectronic and optochemical applications. Plasmon resonance has found widespread use in efficient optical transducers of refractive index changes in liquids. However, it has proven challenging to translate these achievements to the selective detection of gases, which typically adsorb non-specifically and induce refractive index changes below the detection limit. Here, it's shown that integration of tailored fractals of dielectric TiO2 nanoparticles on a plasmonic metasurface strongly enhances the interaction between the plasmonic field and volatile organic molecules and provides a means for their selective detection. Notably, this superior optical response is due to the enhancement of the interaction between the dielectric fractals and the plasmonic metasurface for thickness of up to 1.8 μm, much higher than the evanescent plasmonic near-field (≈30 nm) . Optimal dielectric-plasmonic structures allow measurements of changes in the refractive index of the gas mixture down to <8 × 10-6 at room temperature and selective identification of three exemplary volatile organic compounds. These findings provide a basis for the development of a novel family of dielectric-plasmonic materials with application extending from light harvesting and photocatalysts to contactless sensors for noninvasive medical diagnostics
Beschreibung:Date Completed 24.08.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201800931