Quantifying Polaron Formation and Charge Carrier Cooling in Lead-Iodide Perovskites

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 30. Mai, Seite e1707312
1. Verfasser: Bretschneider, Simon A (VerfasserIn)
Weitere Verfasser: Ivanov, Ivan, Wang, Hai I, Miyata, Kiyoshi, Zhu, Xiaoyang, Bonn, Mischa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article THz spectroscopy carrier cooling hot carriers lead-iodide perovskite polaron formation
LEADER 01000caa a22002652 4500
001 NLM284930016
003 DE-627
005 20240229161700.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201707312  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM284930016 
035 |a (NLM)29847699 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bretschneider, Simon A  |e verfasserin  |4 aut 
245 1 0 |a Quantifying Polaron Formation and Charge Carrier Cooling in Lead-Iodide Perovskites 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Notwithstanding the success of lead-halide perovskites in emerging solar energy conversion technologies, many of the fundamental photophysical phenomena in this material remain debated. Here, the initial steps following photogeneration of free charge carriers in lead-iodide perovskites are studied, and timescales of charge carrier cooling and polaron formation, as a function of temperature and charge carrier excess energy, are quantified. It is found, using terahertz time-domain spectroscopy (THz-TDS), that the observed femtosecond rise in the photoconductivity can be described very well using a simple model of sequential charge carrier cooling and polaron formation. For excitation above the bandgap, the carrier cooling time depends on the charge carrier excess energy and lattice temperature, with cooling rates varying between 1 and 6 meV fs-1 , depending on the cation. While carrier cooling depends on the cation, polaron formation occurs within ≈400 fs in CH3 NH3 PbI3 (MAPbI3 ), CH(NH2 )2 PbI3 (FAPbI3 ), and CsPbI3 . Its formation time is independent of temperature between 160 and 295 K. The very similar polaron formation dynamics observed for the three perovskites points to the critical role of the inorganic lattice, rather than the cations, for polaron formation 
650 4 |a Journal Article 
650 4 |a THz spectroscopy 
650 4 |a carrier cooling 
650 4 |a hot carriers 
650 4 |a lead-iodide perovskite 
650 4 |a polaron formation 
700 1 |a Ivanov, Ivan  |e verfasserin  |4 aut 
700 1 |a Wang, Hai I  |e verfasserin  |4 aut 
700 1 |a Miyata, Kiyoshi  |e verfasserin  |4 aut 
700 1 |a Zhu, Xiaoyang  |e verfasserin  |4 aut 
700 1 |a Bonn, Mischa  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2018) vom: 30. Mai, Seite e1707312  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2018  |g day:30  |g month:05  |g pages:e1707312 
856 4 0 |u http://dx.doi.org/10.1002/adma.201707312  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 30  |c 05  |h e1707312