|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM284910406 |
003 |
DE-627 |
005 |
20231225044217.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201705979
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0949.xml
|
035 |
|
|
|a (DE-627)NLM284910406
|
035 |
|
|
|a (NLM)29845654
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jing, Shengyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Carbon-Encapsulated WOx Hybrids as Efficient Catalysts for Hydrogen Evolution
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.08.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Developing non-noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost-effective electrochemical evolution of hydrogen. Herein, carbon-encapsulated WOx anchored on a carbon support (WOx C/C) that has remarkable Pt-like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, WO bond, and hollow sites). Experimental results confirm that WOx @C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm-2 , and also has outstanding stability at -50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost-effective catalysts for scalable hydrogen generation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a carbon-encapsulated WOx
|
650 |
|
4 |
|a catalysts
|
650 |
|
4 |
|a density functional theory
|
650 |
|
4 |
|a hydrogen evolution reaction
|
650 |
|
4 |
|a stability
|
700 |
1 |
|
|a Lu, Jiajia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Guangtao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Shibin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zengsong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Yanfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Pei Kang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 28 vom: 15. Juli, Seite e1705979
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:28
|g day:15
|g month:07
|g pages:e1705979
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201705979
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 28
|b 15
|c 07
|h e1705979
|