Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li4 Mn5 O12 Coating

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 28. Mai, Seite e1801751
1. Verfasser: Zhang, Xu-Dong (VerfasserIn)
Weitere Verfasser: Shi, Ji-Lei, Liang, Jia-Yan, Yin, Ya-Xia, Zhang, Jie-Nan, Yu, Xi-Qian, Guo, Yu-Guo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cathode materials electrochemistry heterostructure lattice oxygen release lithium-ion batteries
LEADER 01000caa a22002652 4500
001 NLM28454020X
003 DE-627
005 20240229161656.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201801751  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM28454020X 
035 |a (NLM)29808533 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xu-Dong  |e verfasserin  |4 aut 
245 1 0 |a Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li4 Mn5 O12 Coating 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Lithium-rich layered oxides with the capability to realize extraordinary capacity through anodic redox as well as classical cationic redox have spurred extensive attention. However, the oxygen-involving process inevitably leads to instability of the oxygen framework and ultimately lattice oxygen release from the surface, which incurs capacity decline, voltage fading, and poor kinetics. Herein, it is identified that this predicament can be diminished by constructing a spinel Li4 Mn5 O12 coating, which is inherently stable in the lattice framework to prevent oxygen release of the lithium-rich layered oxides at the deep delithiated state. The controlled KMnO4 oxidation strategy ensures uniform and integrated encapsulation of Li4 Mn5 O12 with structural compatibility to the layered core. With this layer suppressing oxygen release, the related phase transformation and catalytic side reaction that preferentially start from the surface are consequently hindered, as evidenced by detailed structural evolution during Li+ extraction/insertion. The heterostructure cathode exhibits highly competitive energy-storage properties including capacity retention of 83.1% after 300 cycles at 0.2 C, good voltage stability, and favorable kinetics. These results highlight the essentiality of oxygen framework stability and effectiveness of this spinel Li4 Mn5 O12 coating strategy in stabilizing the surface of lithium-rich layered oxides against lattice oxygen escaping for designing high-performance cathode materials for high-energy-density lithium-ion batteries 
650 4 |a Journal Article 
650 4 |a cathode materials 
650 4 |a electrochemistry 
650 4 |a heterostructure 
650 4 |a lattice oxygen release 
650 4 |a lithium-ion batteries 
700 1 |a Shi, Ji-Lei  |e verfasserin  |4 aut 
700 1 |a Liang, Jia-Yan  |e verfasserin  |4 aut 
700 1 |a Yin, Ya-Xia  |e verfasserin  |4 aut 
700 1 |a Zhang, Jie-Nan  |e verfasserin  |4 aut 
700 1 |a Yu, Xi-Qian  |e verfasserin  |4 aut 
700 1 |a Guo, Yu-Guo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2018) vom: 28. Mai, Seite e1801751  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2018  |g day:28  |g month:05  |g pages:e1801751 
856 4 0 |u http://dx.doi.org/10.1002/adma.201801751  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 28  |c 05  |h e1801751