Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 28. Mai, Seite e1801720
1. Verfasser: Choi, Jongmin (VerfasserIn)
Weitere Verfasser: Jo, Jea Woong, de Arquer, F Pelayo García, Zhao, Yong-Biao, Sun, Bin, Kim, Junghwan, Choi, Min-Jae, Baek, Se-Woong, Proppe, Andrew H, Seifitokaldani, Ali, Nam, Dae-Hyun, Li, Peicheng, Ouellette, Olivier, Kim, Younghoon, Voznyy, Oleksandr, Hoogland, Sjoerd, Kelley, Shana O, Lu, Zheng-Hong, Sargent, Edward H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Infrared ZnO conductivity doping quantum dot solar cells
LEADER 01000caa a22002652 4500
001 NLM284539872
003 DE-627
005 20240229161656.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201801720  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM284539872 
035 |a (NLM)29808501 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Choi, Jongmin  |e verfasserin  |4 aut 
245 1 0 |a Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Photovoltaic (PV) materials such as perovskites and silicon are generally unabsorptive at wavelengths longer than 1100 nm, leaving a significant portion of the IR solar spectrum unharvested. Small-bandgap colloidal quantum dots (CQDs) are a promising platform to offer tandem complementary IR PV solutions. Today, the best performing CQD PVs use zinc oxide (ZnO) as an electron-transport layer. However, these electrodes require ultraviolet (UV)-light activation to overcome the low carrier density of ZnO, precluding the realization of CQD tandem photovoltaics. Here, a new sol-gel UV-free electrode based on Al/Cl hybrid doping of ZnO (CAZO) is developed. Al heterovalent doping provides a strong n-type character while Cl surface passivation leads to a more favorable band alignment for electron extraction. CAZO CQD IR solar cell devices exhibit, at wavelengths beyond the Si bandgap, an external quantum efficiency of 73%, leading to an additional 0.92% IR power conversion efficiency without UV activation. Conventional ZnO devices, on the other hand, add fewer than 0.01 power points at these operating conditions 
650 4 |a Journal Article 
650 4 |a Infrared 
650 4 |a ZnO 
650 4 |a conductivity 
650 4 |a doping 
650 4 |a quantum dot solar cells 
700 1 |a Jo, Jea Woong  |e verfasserin  |4 aut 
700 1 |a de Arquer, F Pelayo García  |e verfasserin  |4 aut 
700 1 |a Zhao, Yong-Biao  |e verfasserin  |4 aut 
700 1 |a Sun, Bin  |e verfasserin  |4 aut 
700 1 |a Kim, Junghwan  |e verfasserin  |4 aut 
700 1 |a Choi, Min-Jae  |e verfasserin  |4 aut 
700 1 |a Baek, Se-Woong  |e verfasserin  |4 aut 
700 1 |a Proppe, Andrew H  |e verfasserin  |4 aut 
700 1 |a Seifitokaldani, Ali  |e verfasserin  |4 aut 
700 1 |a Nam, Dae-Hyun  |e verfasserin  |4 aut 
700 1 |a Li, Peicheng  |e verfasserin  |4 aut 
700 1 |a Ouellette, Olivier  |e verfasserin  |4 aut 
700 1 |a Kim, Younghoon  |e verfasserin  |4 aut 
700 1 |a Voznyy, Oleksandr  |e verfasserin  |4 aut 
700 1 |a Hoogland, Sjoerd  |e verfasserin  |4 aut 
700 1 |a Kelley, Shana O  |e verfasserin  |4 aut 
700 1 |a Lu, Zheng-Hong  |e verfasserin  |4 aut 
700 1 |a Sargent, Edward H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2018) vom: 28. Mai, Seite e1801720  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2018  |g day:28  |g month:05  |g pages:e1801720 
856 4 0 |u http://dx.doi.org/10.1002/adma.201801720  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 28  |c 05  |h e1801720