|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM284539872 |
003 |
DE-627 |
005 |
20240229161656.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201801720
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM284539872
|
035 |
|
|
|a (NLM)29808501
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Choi, Jongmin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Photovoltaic (PV) materials such as perovskites and silicon are generally unabsorptive at wavelengths longer than 1100 nm, leaving a significant portion of the IR solar spectrum unharvested. Small-bandgap colloidal quantum dots (CQDs) are a promising platform to offer tandem complementary IR PV solutions. Today, the best performing CQD PVs use zinc oxide (ZnO) as an electron-transport layer. However, these electrodes require ultraviolet (UV)-light activation to overcome the low carrier density of ZnO, precluding the realization of CQD tandem photovoltaics. Here, a new sol-gel UV-free electrode based on Al/Cl hybrid doping of ZnO (CAZO) is developed. Al heterovalent doping provides a strong n-type character while Cl surface passivation leads to a more favorable band alignment for electron extraction. CAZO CQD IR solar cell devices exhibit, at wavelengths beyond the Si bandgap, an external quantum efficiency of 73%, leading to an additional 0.92% IR power conversion efficiency without UV activation. Conventional ZnO devices, on the other hand, add fewer than 0.01 power points at these operating conditions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Infrared
|
650 |
|
4 |
|a ZnO
|
650 |
|
4 |
|a conductivity
|
650 |
|
4 |
|a doping
|
650 |
|
4 |
|a quantum dot solar cells
|
700 |
1 |
|
|a Jo, Jea Woong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a de Arquer, F Pelayo García
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yong-Biao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Junghwan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choi, Min-Jae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Baek, Se-Woong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Proppe, Andrew H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Seifitokaldani, Ali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nam, Dae-Hyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Peicheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ouellette, Olivier
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Younghoon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Voznyy, Oleksandr
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hoogland, Sjoerd
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kelley, Shana O
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Zheng-Hong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sargent, Edward H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2018) vom: 28. Mai, Seite e1801720
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2018
|g day:28
|g month:05
|g pages:e1801720
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201801720
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2018
|b 28
|c 05
|h e1801720
|