|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM284517089 |
003 |
DE-627 |
005 |
20240229161654.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201800647
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM284517089
|
035 |
|
|
|a (NLM)29806159
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, Jin-Oh
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a It is demonstrated that the crystal size of small-molecule organic semiconductors can be controlled during solution shearing by tuning the shape and dimensions of the micropillars on the blade. Increasing the size and spacing of the rectangular pillars increases the crystal size, resulting in higher thin-film mobility. This phenomenon is attributed as the microstructure changing the degree and density of the meniscus line curvature, thereby controlling the nucleation process. The use of allylhybridpolycarbosilane (AHPCS), an inorganic polymer, is also demonstrated as the microstructured blade for solution shearing, which has high resistance to organic solvents, can easily be microstructured via molding, and is flexible and durable. Finally, it is shown that solution shearing can be performed on a curved surface using a curved blade. These demonstrations bring solution shearing closer to industrial applications and expand its applicability to various printed flexible electronics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a TIPS-pentacene
|
650 |
|
4 |
|a inorganic polymers
|
650 |
|
4 |
|a microstructuring
|
650 |
|
4 |
|a soft lithography
|
650 |
|
4 |
|a solution shearing
|
700 |
1 |
|
|a Lee, Jeong-Chan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Min-Ji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Noh, Hyunwoo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yeom, Hye-In
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ko, Jong Beom
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Tae Hoon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ko Park, Sang-Hee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Dong-Pyo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, Steve
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2018) vom: 28. Mai, Seite e1800647
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2018
|g day:28
|g month:05
|g pages:e1800647
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201800647
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2018
|b 28
|c 05
|h e1800647
|