Temporal response of soil organic carbon after grassland-related land-use change

© 2018 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 10 vom: 27. Okt., Seite 4731-4746
1. Verfasser: Li, Wei (VerfasserIn)
Weitere Verfasser: Ciais, Philippe, Guenet, Bertrand, Peng, Shushi, Chang, Jinfeng, Chaplot, Vincent, Khudyaev, Sergey, Peregon, Anna, Piao, Shilong, Wang, Yilong, Yue, Chao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't NPP land-use and land-cover change soil carbon response curve soil organic carbon temporal change Soil Carbon 7440-44-0
Beschreibung
Zusammenfassung:© 2018 John Wiley & Sons Ltd.
The net flux of CO2 exchanged with the atmosphere following grassland-related land-use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired-sites to quantify temporal SOC changes after grassland-related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post-LUC time series of SOC data was combined with satellite-based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long-term (100 years horizon) cumulative SOC emissions for grassland-related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland-related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation
Beschreibung:Date Completed 24.01.2019
Date Revised 24.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.14328