Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra

© 2018 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 10 vom: 26. Okt., Seite 4946-4959
1. Verfasser: Liang, Junyi (VerfasserIn)
Weitere Verfasser: Xia, Jiangyang, Shi, Zheng, Jiang, Lifen, Ma, Shuang, Lu, Xingjie, Mauritz, Marguerite, Natali, Susan M, Pegoraro, Elaine, Penton, Christopher Ryan, Plaza, César, Salmon, Verity G, Celis, Gerardo, Cole, James R, Konstantinidis, Konstantinos T, Tiedje, James M, Zhou, Jizhong, Schuur, Edward A G, Luo, Yiqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. acclimation biotic responses carbon modeling climate warming data assimilation permafrost soil carbon mehr... Soil Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM284483540
003 DE-627
005 20231225043322.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14325  |2 doi 
028 5 2 |a pubmed24n0948.xml 
035 |a (DE-627)NLM284483540 
035 |a (NLM)29802797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Junyi  |e verfasserin  |4 aut 
245 1 0 |a Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.01.2019 
500 |a Date Revised 22.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 John Wiley & Sons Ltd. 
520 |a Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over 5 years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g/m2 , respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a acclimation 
650 4 |a biotic responses 
650 4 |a carbon modeling 
650 4 |a climate warming 
650 4 |a data assimilation 
650 4 |a permafrost 
650 4 |a soil carbon 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Xia, Jiangyang  |e verfasserin  |4 aut 
700 1 |a Shi, Zheng  |e verfasserin  |4 aut 
700 1 |a Jiang, Lifen  |e verfasserin  |4 aut 
700 1 |a Ma, Shuang  |e verfasserin  |4 aut 
700 1 |a Lu, Xingjie  |e verfasserin  |4 aut 
700 1 |a Mauritz, Marguerite  |e verfasserin  |4 aut 
700 1 |a Natali, Susan M  |e verfasserin  |4 aut 
700 1 |a Pegoraro, Elaine  |e verfasserin  |4 aut 
700 1 |a Penton, Christopher Ryan  |e verfasserin  |4 aut 
700 1 |a Plaza, César  |e verfasserin  |4 aut 
700 1 |a Salmon, Verity G  |e verfasserin  |4 aut 
700 1 |a Celis, Gerardo  |e verfasserin  |4 aut 
700 1 |a Cole, James R  |e verfasserin  |4 aut 
700 1 |a Konstantinidis, Konstantinos T  |e verfasserin  |4 aut 
700 1 |a Tiedje, James M  |e verfasserin  |4 aut 
700 1 |a Zhou, Jizhong  |e verfasserin  |4 aut 
700 1 |a Schuur, Edward A G  |e verfasserin  |4 aut 
700 1 |a Luo, Yiqi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 10 vom: 26. Okt., Seite 4946-4959  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:10  |g day:26  |g month:10  |g pages:4946-4959 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14325  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 10  |b 26  |c 10  |h 4946-4959