Antibody-Binding, Antifouling Surface Coatings Based on Recombinant Expression of Zwitterionic EK Peptides

Development of antifouling films which selectively capture or target proteins of interest is essential for controlling interactions at the "bio/nano" interface. However, in order to synthesize biofunctional films from synthetic polymers that incorporate chemical "motifs" for surf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 5 vom: 05. Feb., Seite 1266-1272
1. Verfasser: Walker, Julia A (VerfasserIn)
Weitere Verfasser: Robinson, Kye J, Munro, Christopher, Gengenbach, Thomas, Muller, David A, Young, Paul R, Lua, Linda H L, Corrie, Simon R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Immobilized Proteins Immunoglobulin G Peptides Recombinant Proteins Viral Nonstructural Proteins Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:Development of antifouling films which selectively capture or target proteins of interest is essential for controlling interactions at the "bio/nano" interface. However, in order to synthesize biofunctional films from synthetic polymers that incorporate chemical "motifs" for surface immobilization, antifouling, and oriented biomolecule attachment, multiple reaction steps need to be carried out at the solid/liquid interface. EKx is a zwitterionic peptide that has previously been shown to have excellent antifouling properties. In this study, we recombinantly expressed EKx peptides and genetically encoded both surface attachment and antibody-binding motifs, before characterizing the resultant biopolymers by traditional methods. These peptides were then immobilized to organosilica nanoparticles for binding IgG, and subsequently capturing dengue NS1 as a model antigen from serum-containing solution. We found that a mixed layer of a short peptide (4.9 kDa) "backfilled" with a longer peptide terminated with an IgG-binding Z-domain (18 kDa) demonstrated selective capture of dengue NS1 protein down to ∼10 ng mL-1 in either PBS or 20% serum
Beschreibung:Date Completed 15.01.2020
Date Revised 15.01.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b00810