X-ray Photoelectron Spectroscopy Studies of Nanoparticles Dispersed in Static Liquid

For nanoparticles active for chemical and energy transformations in static liquid environment, chemistries of surface or near-surface regions of these catalyst nanoparticles in liquid are crucial for fundamentally understanding their catalytic performances at a molecular level. Compared to catalysis...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 33 vom: 21. Aug., Seite 9606-9616
1. Verfasser: Nguyen, Luan (VerfasserIn)
Weitere Verfasser: Tao, Paul Pengcheng, Liu, Huimin, Al-Hada, Mohamed, Amati, Matteo, Sezen, Hikmet, Gregoratti, Luca, Tang, Yu, House, Stephen D, Tao, Franklin Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:For nanoparticles active for chemical and energy transformations in static liquid environment, chemistries of surface or near-surface regions of these catalyst nanoparticles in liquid are crucial for fundamentally understanding their catalytic performances at a molecular level. Compared to catalysis at a solid-gas interface, there is very limited information on the surface of these catalyst nanoparticles under a working condition or during catalysis in liquid. Photoelectron spectroscopy is a surface-sensitive technique; however, it is challenging to study the surfaces of catalyst nanoparticles dispersed in static liquid because of the short inelastic mean free path of photoelectrons traveling in liquid. Here, we report a method for tracking the surface of nanoparticles dispersed in static liquid by employing graphene layers as an electron-transparent membrane to separate the static liquid containing a solvent, catalyst nanoparticles, and reactants from the high-vacuum environment of photoelectron spectrometers. The surfaces of Ag nanoparticles dispersed in static liquid sealed in such a graphene membrane liquid cell were successfully characterized using a photoelectron spectrometer equipped with a high vacuum energy analyzer. With this method, the surface of catalyst nanoparticles dispersed in liquid during catalysis at a relatively high temperature up to 150 °C can be tracked with photoelectron spectroscopy
Beschreibung:Date Completed 17.10.2018
Date Revised 17.10.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b00806