A Centimeter-Scale Inorganic Nanoparticle Superlattice Monolayer with Non-Close-Packing and its High Performance in Memory Devices

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 27 vom: 01. Juli, Seite e1800595
1. Verfasser: Wang, Ke (VerfasserIn)
Weitere Verfasser: Ling, Haifeng, Bao, Yan, Yang, Mengting, Yang, Yi, Hussain, Mubashir, Wang, Huayang, Zhang, Lianbin, Xie, Linghai, Yi, Mingdong, Huang, Wei, Xie, Xiaolin, Zhu, Jintao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article inorganic nanoparticles liquid-liquid interface assembly nano-floating-gate memory devices non-close-packing superlattice monolayer
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Due to the near-field coupling effect, non-close-packed nanoparticle (NP) assemblies with tunable interparticle distance (d) attract great attention and show huge potential applications in various functional devices, e.g., organic nano-floating-gate memory (NFGM) devices. Unfortunately, the fabrication of device-scale non-close-packed 2D NPs material still remains a challenge, limiting its practical applications. Here, a facile yet robust "rapid liquid-liquid interface assembly" strategy is reported to generate a non-close-packed AuNP superlattice monolayer (SM) on a centimeter scale for high-performance pentacene-based NFGM. The d and hence the surface plasmon resonance spectra of SM can be tailored by adjusting the molecular weight of tethered polymers. Precise control over the d value allows the successful fabrication of photosensitive NFGM devices with highly tunable performances from short-term memory to nonvolatile data storage. The best performing nonvolatile memory device shows remarkable 8-level (3-bit) storage and a memory ratio over 105 even after 10 years compared with traditional devices with a AuNP amorphous monolayer. This work provides a new opportunity to obtain large area 2D NPs materials with non-close-packed structure, which is significantly meaningful to microelectronic, photovoltaics devices, and biochemical sensors
Beschreibung:Date Completed 01.08.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201800595