|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM284287776 |
003 |
DE-627 |
005 |
20231225042851.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201707433
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0947.xml
|
035 |
|
|
|a (DE-627)NLM284287776
|
035 |
|
|
|a (NLM)29782672
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cheng, Zhongzhou
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High-Yield Production of Monolayer FePS3 Quantum Sheets via Chemical Exfoliation for Efficient Photocatalytic Hydrogen Evolution
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a 2D layered transition metal phosphorus trichalcogenides (MPX3 ) possess higher in-plane stiffness and lower cleavage energies than graphite. This allows them to be exfoliated down to the atomic thickness. However, a rational exfoliation route has to be sought to achieve surface-active and uniform individual layers. Herein, monolayered FePS3 quantum sheets (QSs) are systematically obtained, whose diameters range from 4-8 nm, through exfoliation of the bulk in hydrazine solution. These QSs exhibit a widened bandgap of 2.18 eV as compared to the bulk (1.60 eV) FePS3 . Benefitting from the monolayer feature, FePS3 QSs demonstrate a substantially accelerated photocatalytic H2 generation rate, which is up to three times higher than the bulk counterpart. This study presents a facile way, for the first time, of producing uniform monolayer FePS3 QSs and opens up new avenues for designing other low-dimensional materials based on MPX3
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a FePS3
|
650 |
|
4 |
|a chemical exfoliation
|
650 |
|
4 |
|a monolayer quantum sheets
|
650 |
|
4 |
|a water splitting
|
700 |
1 |
|
|a Shifa, Tofik Ahmed
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Fengmei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Peng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Chao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Quanlin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 26 vom: 21. Juni, Seite e1707433
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:26
|g day:21
|g month:06
|g pages:e1707433
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201707433
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 26
|b 21
|c 06
|h e1707433
|