Phospholipid-Block Copolymer Hybrid Vesicles with Lysosomal Escape Ability

The success of nanoparticulate formulations in drug delivery depends on various aspects including their toxicity, internalization, and intracellular location. Vesicular assemblies consisting of phospholipids and amphiphilic block copolymers are an emerging platform, which combines the benefits from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 23 vom: 12. Juni, Seite 6874-6886
1. Verfasser: Zong, Wei (VerfasserIn)
Weitere Verfasser: Thingholm, Bo, Itel, Fabian, Schattling, Philipp S, Brodszkij, Edit, Mayer, Daniel, Stenger, Steffen, Goldie, Kenneth N, Han, Xiaojun, Städler, Brigitte
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Phospholipids Polymers Unilamellar Liposomes
Beschreibung
Zusammenfassung:The success of nanoparticulate formulations in drug delivery depends on various aspects including their toxicity, internalization, and intracellular location. Vesicular assemblies consisting of phospholipids and amphiphilic block copolymers are an emerging platform, which combines the benefits from liposomes and polymersomes while overcoming their challenges. We report the synthesis of poly(cholesteryl methacrylate)- block-poly(2-(dimethylamino) ethyl methacrylate) (pCMA- b-pDMAEMA) block copolymers and their assembly with phospholipids into hybrid vesicles. Their geometry, their ζ-potential, and their ability to adsorb onto polymer-coated surfaces were assessed. Giant unilamellar vesicles were employed to confirm the presence of both the phospholipids and the block copolymer in the same membrane. Furthermore, the cytotoxicity of selected hybrid vesicles was determined in RAW 264.7 mouse macrophages, primary rat Kupffer cells, and human macrophages. The internalization and lysosomal escape ability of the hybrid vesicles were confirmed using RAW 264.7 mouse macrophages. Taken together, our findings illustrate that the reported hybrid vesicles are a promising complementary drug delivery platform for existing liposomes and polymersomes
Beschreibung:Date Completed 29.03.2019
Date Revised 29.03.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b01073