Superoxide (O2.-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 128(2018) vom: 30. Juli, Seite 115-125
1. Verfasser: Künstler, András (VerfasserIn)
Weitere Verfasser: Bacsó, Renáta, Albert, Réka, Barna, Balázs, Király, Zoltán, Hafez, Yaser Mohamed, Fodor, József, Schwarczinger, Ildikó, Király, Lóránt
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Antioxidants Biotrophic pathogens Heat shock Hypersensitive response NADPH oxidase Superoxide Symptomless (type I) nonhost resistance Chloroplast Proteins Superoxides mehr... 11062-77-4 Superoxide Dismutase-1 EC 1.15.1.1 NADPH Oxidases EC 1.6.3.-
LEADER 01000naa a22002652 4500
001 NLM284220299
003 DE-627
005 20231225042717.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2018.05.010  |2 doi 
028 5 2 |a pubmed24n0947.xml 
035 |a (DE-627)NLM284220299 
035 |a (NLM)29775863 
035 |a (PII)S0981-9428(18)30210-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Künstler, András  |e verfasserin  |4 aut 
245 1 0 |a Superoxide (O2.-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.07.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2018 Elsevier Masson SAS. All rights reserved. 
520 |a Nonhost resistance is the most common form of disease resistance exhibited by plants against most pathogenic microorganisms. Type I nonhost resistance is symptomless (i.e. no macroscopically visible cell/tissue death), implying an early halt of pathogen growth. The timing/speed of defences is much more rapid during type I nonhost resistance than during type II nonhost and host ("gene-for-gene") resistance associated with a hypersensitive response (localized necrosis, HR). However, the mechanism(s) underlying symptomless (type I) nonhost resistance is not entirely understood. Here we assessed accumulation dynamics of the reactive oxygen species superoxide (O2.-) during interactions of plants with a range of biotrophic and hemibiotrophic pathogens resulting in susceptibility, symptomless nonhost resistance or host resistance with HR. Our results show that the timing of macroscopically detectable superoxide accumulation (1-4 days after inoculation, DAI) is always associated with the speed of the defense response (symptomless nonhost resistance vs. host resistance with HR) in inoculated leaves. The relatively early (1 DAI) superoxide accumulation during symptomless nonhost resistance of barley to wheat powdery mildew (Blumeria graminis f. sp. tritici) is localized to mesophyll chloroplasts of inoculated leaves and coupled to enhanced NADPH oxidase (EC 1.6.3.1) activity and transient increases in expression of genes regulating superoxide levels and cell death (superoxide dismutase, HvSOD1 and BAX inhibitor-1, HvBI-1). Importantly, the partial suppression of symptomless nonhost resistance of barley to wheat powdery mildew by heat shock (49 °C, 45 s) and antioxidant (SOD and catalase) treatments points to a functional role of superoxide in symptomless (type I) nonhost resistance 
650 4 |a Journal Article 
650 4 |a Antioxidants 
650 4 |a Biotrophic pathogens 
650 4 |a Heat shock 
650 4 |a Hypersensitive response 
650 4 |a NADPH oxidase 
650 4 |a Superoxide 
650 4 |a Symptomless (type I) nonhost resistance 
650 7 |a Chloroplast Proteins  |2 NLM 
650 7 |a Superoxides  |2 NLM 
650 7 |a 11062-77-4  |2 NLM 
650 7 |a Superoxide Dismutase-1  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a NADPH Oxidases  |2 NLM 
650 7 |a EC 1.6.3.-  |2 NLM 
700 1 |a Bacsó, Renáta  |e verfasserin  |4 aut 
700 1 |a Albert, Réka  |e verfasserin  |4 aut 
700 1 |a Barna, Balázs  |e verfasserin  |4 aut 
700 1 |a Király, Zoltán  |e verfasserin  |4 aut 
700 1 |a Hafez, Yaser Mohamed  |e verfasserin  |4 aut 
700 1 |a Fodor, József  |e verfasserin  |4 aut 
700 1 |a Schwarczinger, Ildikó  |e verfasserin  |4 aut 
700 1 |a Király, Lóránt  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 128(2018) vom: 30. Juli, Seite 115-125  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:128  |g year:2018  |g day:30  |g month:07  |g pages:115-125 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2018.05.010  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 128  |j 2018  |b 30  |c 07  |h 115-125