Temperature response of permafrost soil carbon is attenuated by mineral protection

© 2018 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 8 vom: 05. Aug., Seite 3401-3415
1. Verfasser: Gentsch, Norman (VerfasserIn)
Weitere Verfasser: Wild, Birgit, Mikutta, Robert, Čapek, Petr, Diáková, Katka, Schrumpf, Marion, Turner, Stephanie, Minnich, Cynthia, Schaarschmidt, Frank, Shibistova, Olga, Schnecker, Jörg, Urich, Tim, Gittel, Antje, Šantrůčková, Hana, Bárta, Jiři, Lashchinskiy, Nikolay, Fuß, Roland, Richter, Andreas, Guggenberger, Georg
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't carbon mineralization incubation mineral-organic association permafrost soils radiocarbon temperature sensitivity Minerals Soil mehr... Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM284211524
003 DE-627
005 20231225042705.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14316  |2 doi 
028 5 2 |a pubmed24n0947.xml 
035 |a (DE-627)NLM284211524 
035 |a (NLM)29774972 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gentsch, Norman  |e verfasserin  |4 aut 
245 1 0 |a Temperature response of permafrost soil carbon is attenuated by mineral protection 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.01.2019 
500 |a Date Revised 02.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 John Wiley & Sons Ltd. 
520 |a Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a carbon mineralization 
650 4 |a incubation 
650 4 |a mineral-organic association 
650 4 |a permafrost soils 
650 4 |a radiocarbon 
650 4 |a temperature sensitivity 
650 7 |a Minerals  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Wild, Birgit  |e verfasserin  |4 aut 
700 1 |a Mikutta, Robert  |e verfasserin  |4 aut 
700 1 |a Čapek, Petr  |e verfasserin  |4 aut 
700 1 |a Diáková, Katka  |e verfasserin  |4 aut 
700 1 |a Schrumpf, Marion  |e verfasserin  |4 aut 
700 1 |a Turner, Stephanie  |e verfasserin  |4 aut 
700 1 |a Minnich, Cynthia  |e verfasserin  |4 aut 
700 1 |a Schaarschmidt, Frank  |e verfasserin  |4 aut 
700 1 |a Shibistova, Olga  |e verfasserin  |4 aut 
700 1 |a Schnecker, Jörg  |e verfasserin  |4 aut 
700 1 |a Urich, Tim  |e verfasserin  |4 aut 
700 1 |a Gittel, Antje  |e verfasserin  |4 aut 
700 1 |a Šantrůčková, Hana  |e verfasserin  |4 aut 
700 1 |a Bárta, Jiři  |e verfasserin  |4 aut 
700 1 |a Lashchinskiy, Nikolay  |e verfasserin  |4 aut 
700 1 |a Fuß, Roland  |e verfasserin  |4 aut 
700 1 |a Richter, Andreas  |e verfasserin  |4 aut 
700 1 |a Guggenberger, Georg  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 8 vom: 05. Aug., Seite 3401-3415  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:8  |g day:05  |g month:08  |g pages:3401-3415 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14316  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 8  |b 05  |c 08  |h 3401-3415