A "Sticky" Mucin-Inspired DNA-Polysaccharide Binder for Silicon and Silicon-Graphite Blended Anodes in Lithium-Ion Batteries

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 26 vom: 09. Juni, Seite e1707594
1. Verfasser: Kim, Sunjin (VerfasserIn)
Weitere Verfasser: Jeong, You Kyeong, Wang, Younseon, Lee, Haeshin, Choi, Jang Wook
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article DNA amphiphilicity mucin polymeric binders silicon anodes Mucins Polysaccharides Graphite 7782-42-5 mehr... 9007-49-2 Lithium 9FN79X2M3F Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New binder concepts have lately demonstrated improvements in the cycle life of high-capacity silicon anodes. Those binder designs adopt adhesive functional groups to enhance affinity with silicon particles and 3D network conformation to secure electrode integrity. However, homogeneous distribution of silicon particles in the presence of a substantial volumetric content of carbonaceous components (i.e., conductive agent, graphite, etc.) is still difficult to achieve while the binder maintains its desired 3D network. Inspired by mucin, the amphiphilic macromolecular lubricant, secreted on the hydrophobic surface of gastrointestine to interface aqueous serous fluid, here, a renatured DNA-alginate amphiphilic binder for silicon and silicon-graphite blended electrodes is reported. Mimicking mucin's structure comprised of a hydrophobic protein backbone and hydrophilic oligosaccharide branches, the renatured DNA-alginate binder offers amphiphilicity from both components, along with a 3D fractal network structure. The DNA-alginate binder facilitates homogeneous distribution of electrode components in the electrode as well as its enhanced adhesion onto a current collector, leading to improved cyclability in both silicon and silicon-graphite blended electrodes
Beschreibung:Date Completed 07.03.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201707594